RT Journal Article T1 Coupling an SPH-based solver with an FEA structural solver to simulate free surface flows interacting with flexible structures A1 Martinez Estevez, Iván A1 Tagliafierro, B. A1 El Rahi, J. A1 Domínguez Alonso, José Manuel A1 Cabrera Crespo, Alejandro Jacobo A1 Troch, P. A1 Gómez Gesteira, Ramon K1 2204 Física de Fluidos AB This work proposes a two-way coupling between a Smoothed Particle Hydrodynamics (SPH) model-based named DualSPHysics and a Finite Element Analysis (FEA) method to solve fluid–structure interaction (FSI). Aiming at having a computationally efficient solution via spatial adjustable resolutions for the two phases, the SPH-FEA coupling herein presented implements the Euler–Bernoulli beam model, based on a simplified model that incorporates axial and flexural deformations, to introduce a solid solver in the DualSPHysics framework. This approach is particularly functional and very precise for slender beam elements undergoing large displacements, and large deformations can also be experienced by the structural elements due to the non-linear FEA implementation via a co-rotational formulation. In this two-way coupling, the structure is discretised in the SPH domain using boundary particles on which the forces exerted by fluid phases are computed. Such forces are passed over to the FEA structural solver that updates the beam shape and, finally, the particle positions are subsequently reshuffled to represent the deformed shape at each time step. The SPH-FEA coupling is validated against four reference cases, which prove the model to be as accurate as other approaches presented in literature. PB Computer Methods in Applied Mechanics and Engineering SN 00457825 YR 2023 FD 2023-05 LK http://hdl.handle.net/11093/4680 UL http://hdl.handle.net/11093/4680 LA eng NO Computer Methods in Applied Mechanics and Engineering, 410, 115989 (2023) NO Ministerio de Ciencia e Innovación | Ref. PID2020-113245RB-I00 DS Investigo RD 25-abr-2025