RT Journal Article T1 A note on Lagrange interpolation of |x| on the Chebyshev and Chebyshev–Lobatto nodal systems: the even cases A1 Berriochoa Esnaola, Elias Manuel Maria A1 Cachafeiro López, María Alicia A1 García Rábade, Héctor A1 García Amor, José Manuel K1 1202.02 Teoría de la Aproximación K1 1202 Análisis y Análisis Funcional K1 1201.13 Polinomios AB Throughout this study, we continue the analysis of a recently found out Gibbs–Wilbraham phenomenon, being related to the behavior of the Lagrange interpolation polynomials of the continuous absolute value function. Our study establishes the error of the Lagrange polynomial interpolants of the function |x| on [−1,1], using Chebyshev and Chebyshev–Lobatto nodal systems with an even number of points. Moreover, with respect to the odd cases, relevant changes in the shape and the extrema of the error are given. PB Mathematics SN 22277390 YR 2022 FD 2022-07-22 LK http://hdl.handle.net/11093/3735 UL http://hdl.handle.net/11093/3735 LA eng NO Mathematics, 10(15): 2558 (2022) NO Ministerio de Ciencia e Innovación, España | Ref. PID2020-116764RB-I00 DS Investigo RD 21-abr-2025