RT Journal Article T1 Quasistatic porous-thermoelastic problems: an a priori error analysis A1 González Baldonedo, Jacobo A1 Fernández García, José Ramón A1 López Campos, José Ángel K1 1206 Análisis Numérico K1 1202 Análisis y Análisis Funcional K1 2213 Termodinámica AB In this paper, we deal with the numerical approximation of some porous-thermoelastic problems. Since the inertial effects are assumed to be negligible, the resulting motion equations are quasistatic. Then, by using the finite element method and the implicit Euler scheme, a fully discrete approximation is introduced. We prove a discrete stability property and a main error estimates result, from which we conclude the linear convergence under appropriate regularity conditions on the continuous solution. Finally, several numerical simulations are shown to demonstrate the accuracy of the approximation, the behavior of the solution and the decay of the discrete energy. PB Mathematics SN 22277390 YR 2021 FD 2021-06-20 LK http://hdl.handle.net/11093/2539 UL http://hdl.handle.net/11093/2539 LA eng NO Mathematics, 9(12): 1436 (2021) NO Ministerio de Ciencia, Innovación y Universidades | Ref. PGC2018-096696-B-I00 DS Investigo RD 14-ene-2025