RT Journal Article T1 Bivariate infinite series solution of Kepler’s equations A1 Tommasini , Daniele K1 1206 Análisis Numérico K1 2512 Ciencias del Espacio K1 21 Astronomía y Astrofísica AB A class of bivariate infinite series solutions of the elliptic and hyperbolic Kepler equations is described, adding to the handful of 1-D series that have been found throughout the centuries. This result is based on an iterative procedure for the analytical computation of all the higher-order partial derivatives of the eccentric anomaly with respect to the eccentricity e and mean anomaly M in a given base point (ec,Mc) of the (e,M) plane. Explicit examples of such bivariate infinite series are provided, corresponding to different choices of (ec,Mc), and their convergence is studied numerically. In particular, the polynomials that are obtained by truncating the infinite series up to the fifth degree reach high levels of accuracy in significantly large regions of the parameter space (e,M). Besides their theoretical interest, these series can be used for designing 2-D spline numerical algorithms for efficiently solving Kepler’s equations for all values of the eccentricity and mean anomaly. PB Mathematics SN 22277390 YR 2021 FD 2021-04-06 LK http://hdl.handle.net/11093/2100 UL http://hdl.handle.net/11093/2100 LA eng NO Mathematics, 9(7): 785 (2021) NO Ministerio de Economia, Industria y Competitividad, Spain | Ref. FIS2017-83762-P DS Investigo RD 05-dic-2024