Show simple item record

dc.contributor.authorFondo Ferreiro, Pablo 
dc.contributor.authorLopez Bravo, Cristina 
dc.contributor.authorGonzález Castaño, Francisco Javier 
dc.contributor.authorGil Castiñeira, Felipe Jose 
dc.contributor.authorCandal Ventureira, David 
dc.date.accessioned2024-09-27T07:57:02Z
dc.date.available2024-09-27T07:57:02Z
dc.date.issued2024-12
dc.identifier.citationComputer Communications, 228, 107956 (2024)spa
dc.identifier.issn01403664
dc.identifier.urihttp://hdl.handle.net/11093/7512
dc.description.abstractTerahertz communications are envisioned as a key enabler for 6G networks. The abundant spectrum available in such ultra high frequencies has the potential to increase network capacity to huge data rates. However, they are extremely affected by blockages, to the point of disrupting ongoing communications. In this paper, we elaborate on the relevance of predicting visibility between users and access points (APs) to improve the performance of THz-based networks by minimizing blockages, that is, maximizing network availability, while at the same time keeping a low reconfiguration overhead. We propose a novel approach to address this problem, by combining a neural network (NN) for predicting future user–AP visibility probability, with a probability threshold for AP reselection to avoid unnecessary reconfigurations. Our experimental results demonstrate that current state-of-the-art handover mechanisms based on received signal strength are not adequate for THz communications, since they are ill-suited to handle hard blockages. Our proposed NN-based solution significantly outperforms them, demonstrating the interest of our strategy as a research line.en
dc.description.sponsorshipXunta de Galicia | Ref. ED481B-2022-019spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2022/04spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PRE2021- 098290spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2020-116329GB-C21spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PDC2021-121335-C21spa
dc.description.sponsorshipUniversidade de Vigo/CISUGspa
dc.language.isoengspa
dc.publisherComputer Communicationsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116329GB-C21/ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121335-C21/ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleLearning-based visibility prediction for terahertz communications in 6G networksen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.comcom.2024.107956
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S0140366424003037spa
dc.publisher.departamentoEnxeñaría telemáticaspa
dc.publisher.grupoinvestigacionGrupo de Tecnoloxías da Informaciónspa
dc.subject.unesco3325 Tecnología de las Telecomunicacionesspa
dc.date.updated2024-09-25T11:44:54Z
dc.computerCitationpub_title=Computer Communications|volume=228|journal_number=|start_pag=107956|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution-NonCommercial-NoDerivatives 4.0 International
    Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International