dc.contributor.author | Aldao Pensado, Enrique | |
dc.contributor.author | Veiga Piñeiro, Gonzalo | |
dc.contributor.author | Domínguez Estévez, Pablo | |
dc.contributor.author | Veiga López, Fernando | |
dc.contributor.author | Fontenla Carrera, Gabriel | |
dc.contributor.author | González Jorge, Higinio | |
dc.contributor.author | Martín Ortega, Elena Beatriz | |
dc.date.accessioned | 2024-07-19T10:11:26Z | |
dc.date.available | 2024-07-19T10:11:26Z | |
dc.date.issued | 2024-06-27 | |
dc.identifier.citation | ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences, X-4/W5-2024, 1-7 (2024) | spa |
dc.identifier.issn | 21949050 | |
dc.identifier.uri | http://hdl.handle.net/11093/7221 | |
dc.description.abstract | Abstract. Advanced Air Mobility (AAM) is an emerging sector that aims to optimise transportation in urban and interurban environments using Unmanned Aerial Vehicles (UAVs). However, these aircraft are particularly susceptible to adverse weather phenomena, such as turbulence or wind gusts. To ensure the safety of operations, high-resolution real-time atmospheric prediction models, such as those based on Computational Fluid Dynamics (CFD), are required. The development of these systems faces challenges as accurate geometric models of navigation environments are needed to simulate the interaction between the wind and the terrain and infrastructure. These models feature complex geometries, so they cannot be manually crafted, requiring automated processing of geospatial data sources. As the main novelty, this work presents a methodology for the automated modelling of interurban environments for CFD simulations using digital elevation models and georeferenced surface semantic classification data. A practical case study was developed in the outskirts of Vigo (Spain), where we demonstrate the effectiveness of our approach and its integration with the open-source CFD software OpenFOAM. | en |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. TED2021-129757B-C3 | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PID2021-125060OB-100 | spa |
dc.description.sponsorship | Ministerio de Universidades | Ref.FPU21/01176 | spa |
dc.language.iso | eng | spa |
dc.publisher | ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences | spa |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-125060OB-I00/ES | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-129756B-C31/ES/ | |
dc.relation | nfo:eu-repo/grantAgreement/MU//FPU21%2F01176 | |
dc.rights | ATTRIBUTION 4.0 INTERNATIONAL | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Towards enhancing the safety of Advanced Air Mobility: Automatic 3D inter-urban modelling for improved weather monitoring | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.5194/isprs-annals-X-4-W5-2024-1-2024 | |
dc.identifier.editor | https://isprs-annals.copernicus.org/articles/X-4-W5-2024/1/2024/ | spa |
dc.publisher.departamento | Enxeñaría dos recursos naturais e medio ambiente | spa |
dc.publisher.departamento | Enxeñaría mecánica, máquinas e motores térmicos e fluídos | spa |
dc.publisher.grupoinvestigacion | Laboratorio de Sistemas Aeroespaciais e de Transporte | spa |
dc.publisher.grupoinvestigacion | Enxeñería Química, Térmica e Medioambiental | spa |
dc.subject.unesco | 3301 Ingeniería y Tecnología Aeronáuticas | spa |
dc.subject.unesco | 2509.99 Otras | spa |
dc.date.updated | 2024-07-05T08:48:05Z | |
dc.computerCitation | pub_title=ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences|volume=X-4/W5-2024|journal_number=|start_pag=1|end_pag=7 | spa |