BibliotecaPortal de investigación
es | gl
  • Home
  • Contact us
  • Give feedback
  • Help
    • About Investigo
    • Search and Find
    • Submit
    • Intellectual Property
    • Open Access Policy
  • Links
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • UNESCO Nomenclature
    • español
    • English
    • Gallegan
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of InvestigoAuthorsTitles Materias Unesco Research GroupsType of ContentsJournal TitlesThis CollectionAuthorsTitlesUNESCO SubjectsResearch GroupsType of ContentsJournal Titles

Library guides

Self-archivingRequest PermissionRelated guides

Statistics

View Usage Statistics

From optics to dark matter: A review on nonlinear Schrödinger–Poisson systems

Paredes Galán, ÁngelAutor UVIGO; Olivieri Cecchi, David NicholasAutor UVIGO; Michinel Álvarez, Humberto JavierAutor UVIGO
DATE: 2020-02
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/7155
EDITED VERSION: https://linkinghub.elsevier.com/retrieve/pii/S0167278919307079
UNESCO SUBJECT: 2101.05 Gravitación ; 2209.13 Óptica no Lineal
DOCUMENT TYPE: article

ABSTRACT

We review recent progress in Schrödinger–Poisson systems in 1+2 and 1+3 dimensions in the presence of nonlinear terms. In a mean field approach, this mathematical model describes the semiclassical behavior of an -body system of identical bosons with nonlocal interactions between them. The 1+2D model can be used to describe the nonlinear propagation of optical beams in thermo-optical media and can be regarded as an analog photonic system for a self-gravitating self-interacting wave, which is the situation of the full 1+3D case, representing the dynamics of coherent dark matter under the assumption that it is made up of ultralight axions. After providing a rough overview of the disparate physical contexts in which the Schrödinger–Poisson equation has been applied, we discuss the main ideas and a number of recent findings in the two aforementioned frameworks. For both setups, we present families of stationary solutions, including vortex states, and discuss the implications of the simulation of propagation dynamics in a number of cases of interest. Finally, we discuss some numerical methods to solve the system of time-dependent partial differential equations.
Show full item record

Files in this item

[PDF]
Name:
2020_paredes_optics_poisson.pdf
Size:
2.977Mb
Format:
PDF
Description:
Embargo indefinido por Copyright
View/Open

Send to

MendeleyZoteroRefworks

The Institutional Repository of the University of Vigo Investigo is disseminated in:

University library
Rúa Leonardo da Vinci, s/n
As Lagoas, Marcosende
36310 Vigo

Location

Information
+34 986 813 821
investigo@uvigo.gal

Accessibility | Legal notice | Data protection
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.gal

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL