Show simple item record

dc.contributor.authorPazo Rodriguez, María 
dc.contributor.authorGerassis Davite, Saki 
dc.contributor.authorAraújo Fernández, María 
dc.contributor.authorMargarida Antunes, I.
dc.contributor.authorRigueira Diaz, Xurxo 
dc.date.accessioned2024-06-13T11:11:36Z
dc.date.available2024-06-13T11:11:36Z
dc.date.issued2024-06-01
dc.identifier.citationThe Science of The Total Environment, 927, 172340 (2024)spa
dc.identifier.issn00489697
dc.identifier.urihttp://hdl.handle.net/11093/7042
dc.description.abstractTackling the impact of missing data in water management is crucial to ensure the reliability of scientific research that informs decision-making processes in public health. The goal of this study is to ascertain the root causes associated with cyanobacteria proliferation under major missing data scenarios. For this purpose, a dynamic missing data management methodology is proposed using Bayesian Machine Learning for accurate surface water quality prediction of a river from Limia basin (Spain). The methodology used entails a sequence of analytical steps, starting with data pre-processing, followed by the selection of a reliable dynamic Bayesian missing value prediction system, leading finally to a supervised analysis of the behavioral patterns exhibited by cyanobacteria. For that, a total of 2,118,844 data points were used, with 205,316 (9.69 %) missing values identified. The machine learning testing showed the iterative structural expectation maximization (SEM) as the best performing algorithm, above the dynamic imputation (DI) and entropy-based dynamic imputation methods (EBDI), enhancing in some cases the accuracy of imputations by approximately 50 % in R2, RMSE, NRMSE, and logarithmic loss values. These findings can impact how data on water quality is being processed and studied, thus, opening the door for more reliable water management strategies that better inform public health decisionsen
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2020-116013RB-I00spa
dc.description.sponsorshipFundação para a Ciência e a Tecnologia | Ref. UIDB/04683/2020spa
dc.description.sponsorshipFundação para a Ciência e a Tecnologia | Ref. UIDP/04683/2020spa
dc.language.isoengspa
dc.publisherThe Science of The Total Environmentspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116013RB-I00/ES
dc.rightsATTRIBUTION 4.0 INTERNATIONAL
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEnhancing water quality prediction for fluctuating missing data scenarios: A dynamic Bayesian network-based processing system to monitor cyanobacteria proliferationen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.scitotenv.2024.172340
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S0048969724024835spa
dc.publisher.departamentoEnxeñaría dos recursos naturais e medio ambientespa
dc.publisher.grupoinvestigacionXestión Segura e Sostible de Recursos Mineraisspa
dc.subject.unesco3212 Salud Publicaspa
dc.subject.unesco3108.01 Bacteriasspa
dc.date.updated2024-05-06T16:21:14Z
dc.computerCitationpub_title=The Science of The Total Environment|volume=927|journal_number=|start_pag=172340|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    ATTRIBUTION 4.0 INTERNATIONAL
    Except where otherwise noted, this item's license is described as ATTRIBUTION 4.0 INTERNATIONAL