Show simple item record

dc.contributor.authorFernández Gavilanes, Milagros 
dc.contributor.authorJuncal Martínez, Jonathan 
dc.contributor.authorGarcía Méndez, Silvia 
dc.contributor.authorCosta Montenegro, Enrique 
dc.contributor.authorGonzález Castaño, Francisco Javier 
dc.date.accessioned2024-05-15T11:33:46Z
dc.date.available2024-05-15T11:33:46Z
dc.date.issued2019-03-01
dc.identifier.citationExpert Systems with Applications, 117, 15-28 (2019)spa
dc.identifier.issn09574174
dc.identifier.urihttp://hdl.handle.net/11093/6811
dc.description.abstractIn recent years there has been intense work on the analysis of social media to support marketing campaigns. A proper methodology for sentiment analysis is a crucial asset in this regard. However, when monitoring major public events the behaviour or social media users may be strongly biased by punctual actions of the participating characters and the sense of group belonging, which is typically linked to specific geographical areas. In this paper, we present a solution combining a location prediction methodology with an unsupervised technique for sentiment analysis to assess automatically the engagement of social network users in different countries during an event with worldwide impact. As far as the authors know, this is the first time such techniques are jointly considered. We demonstrate that the technique is coherent with the intrinsic disposition of individual users to typical actions of the characters participating in the events, as well as with the sense of group belonging.en
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad | Ref. TEC2016-76465-C2-2-Rspa
dc.description.sponsorshipXunta de Galicia | Ref. GRC2014/046spa
dc.description.sponsorshipXunta de Galicia | Ref. ED341D R2016/012spa
dc.language.isoengspa
dc.publisherExpert Systems with Applicationsspa
dc.relationinfo:eu-repo/grantAgreement/MICINN/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2016-76465-C2-2-R/ES
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDifferentiating users by language and location estimation in sentiment analisys of informal text during major public eventsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.eswa.2018.09.007
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S0957417418305785spa
dc.publisher.departamentoEnxeñaría telemáticaspa
dc.publisher.grupoinvestigacionGrupo de Tecnoloxías da Informaciónspa
dc.subject.unesco6308 Comunicaciones Socialesspa
dc.subject.unesco6309 Grupos Socialesspa
dc.date.updated2024-03-19T06:38:32Z
dc.computerCitationpub_title=Expert Systems with Applications|volume=117|journal_number=|start_pag=15|end_pag=28spa


Files in this item

[PDF]

    Show simple item record

    Atribución-NoComercial-SinDerivadas 4.0 Internacional
    Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 4.0 Internacional