Show simple item record

dc.contributor.authorCelard Pérez, Pedro
dc.contributor.authorSeara Vieira, Adrián 
dc.contributor.authorSorribes Fernandez, Jose Manuel 
dc.contributor.authorLorenzo Iglesias, Eva Maria 
dc.contributor.authorBorrajo Diz, Maria Lourdes 
dc.date.accessioned2024-04-08T10:13:53Z
dc.date.available2024-04-08T10:13:53Z
dc.date.issued2024-01-23
dc.identifier.citationElectronics, 13(3): 476 (2024)spa
dc.identifier.issn20799292
dc.identifier.urihttp://hdl.handle.net/11093/6574
dc.description.abstractGenerating synthetic time series data, such as videos, presents a formidable challenge as complexity increases when it is necessary to maintain a specific distribution of shown stages. One such case is embryonic development, where prediction and categorization are crucial for anticipating future outcomes. To address this challenge, we propose a Siamese architecture based on diffusion models to generate predictive long-duration embryonic development videos and an evaluation method to select the most realistic video in a non-supervised manner. We validated this model using standard metrics, such as Fréchet inception distance (FID), Fréchet video distance (FVD), structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and mean squared error (MSE). The proposed model generates videos of up to 197 frames with a size of 128×128, considering real input images. Regarding the quality of the videos, all results showed improvements over the default model (FID = 129.18, FVD = 802.46, SSIM = 0.39, PSNR = 28.63, and MSE = 97.46). On the coherence of the stages, a global stage mean squared error of 9.00 was achieved versus the results of 13.31 and 59.3 for the default methods. The proposed technique produces more accurate videos and successfully removes cases that display sudden movements or changes.spa
dc.description.sponsorshipXunta de Galicia | Ref. ED481A 2021/286spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2020-113673RB-I00spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2022/03-GRCspa
dc.language.isoengspa
dc.publisherElectronicsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113673RB-I00/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleImproving generation and evaluation of long image sequences for embryo development predictionen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/electronics13030476
dc.identifier.editorhttps://www.mdpi.com/2079-9292/13/3/476spa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionSistemas Informáticos de Nova Xeraciónspa
dc.subject.unesco3314 Tecnología Médicaspa
dc.subject.unesco3314.99 Otrasspa
dc.date.updated2024-04-08T10:09:20Z
dc.computerCitationpub_title=Electronics|volume=13|journal_number=3|start_pag=476|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International