Laser-matter interactions in additive manufacturing of stainless steel SS316L and 13-93 bioactive glass revealed by in situ X-ray imaging
DATA:
2018-12
IDENTIFICADOR UNIVERSAL: http://hdl.handle.net/11093/6507
VERSIÓN EDITADA: https://linkinghub.elsevier.com/retrieve/pii/S2214860418303178
MATERIA UNESCO: 3307.07 Dispositivos láser
TIPO DE DOCUMENTO: article
RESUMO
Laser-matter interactions in laser additive manufacturing (LAM) occur on short time scales (10−6–10−3 s) and have traditionally proven difficult to characterise. We investigate these interactions during LAM of stainless steel SS316L and 13-93 bioactive glass powders using a custom built LAM process replicator (LAMPR) with in situ and operando synchrotron X-ray real-time radiography. This reveals a wide range of melt track solidification phenomena as well as spatter and porosity formation. We hypothesise that the SS316L powder absorbs the laser energy at its surface while the trace elements in the 13-93 bioactive glass powder absorb and remit the infra-red radiation. Our results show that a low viscosity melt, e.g. 8 mPa s for SS316L, tends to generate spatter (diameter up to 250 μm and an average spatter velocity of 0.26 m s−1) and form a melt track by molten pool wetting. In contrast, a high viscosity melt, e.g. 2 Pa s for 13-93 bioactive glass, inhibits spatter formation by damping the Marangoni convection, forming a melt track via viscous flow. The viscous flow in 13-93 bioactive glass resists pore transport; combined with the reboil effect, this promotes pore growth during LAM, resulting in a pore size up to 600 times larger than that exhibited in the SS316L sample.