dc.contributor.author | Fondo Ferreiro, Pablo | |
dc.contributor.author | Gil Castiñeira, Felipe Jose | |
dc.contributor.author | González Castaño, Francisco Javier | |
dc.contributor.author | Candal Ventureira, David | |
dc.contributor.author | Rodriguez, Jonathan | |
dc.contributor.author | Morgado, Antonio J. | |
dc.contributor.author | Mumtaz, Shahid | |
dc.date.accessioned | 2024-03-21T11:32:18Z | |
dc.date.available | 2024-03-21T11:32:18Z | |
dc.date.issued | 2023-12 | |
dc.identifier.citation | IEEE Transactions on Vehicular Technology, 72(12): 16637-16649 (2023) | spa |
dc.identifier.issn | 00189545 | |
dc.identifier.issn | 19399359 | |
dc.identifier.uri | http://hdl.handle.net/11093/6478 | |
dc.description.abstract | Next-generation cellular networks will play a key role in the evolution of different vertical industries. Low latency will be a major requirement in many related uses cases. This requirement is specially challenging in scenarios with high mobility of end devices, such as vehicular communications. The Multi-Access Edge Computing (MEC) paradigm seeks to satisfy it. In this article we propose the dynamic deployment of anchor point network functions at edge locations and the assignment of terminals to these anchor points with the joint objective of minimizing communications latency and reducing network overhead. We formally define the problem as a multi-objective optimization and also propose a novel heuristic greedy algorithm for approximating the solution. This algorithm compares favorably with baseline and state-of-the-art strategies for latency minimization while reducing the overhead caused by network reconfigurations. | en |
dc.description.sponsorship | Xunta de Galicia | Ref. ED481B-2022-019 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. ED431C 2022/04 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. IN854A 2020/01 | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PID2020-116329GB-C21 | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PDC2021-121335-C21 | spa |
dc.description.sponsorship | Universidade de Vigo/CISUG | spa |
dc.language.iso | eng | spa |
dc.publisher | IEEE Transactions on Vehicular Technology | spa |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116329GB-C21/ES | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121335-C21/ES | |
dc.rights | Attribution-NonCommercial-NoDerivs 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Efficient anchor point deployment for low latency connectivity in MEC-assisted C-V2X scenarios | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1109/TVT.2023.3297017 | |
dc.identifier.editor | https://ieeexplore.ieee.org/document/10187708/ | spa |
dc.publisher.departamento | Enxeñaría telemática | spa |
dc.publisher.grupoinvestigacion | Grupo de Tecnoloxías da Información | spa |
dc.subject.unesco | 3325 Tecnología de las Telecomunicaciones | spa |
dc.date.updated | 2024-03-21T00:54:01Z | |
dc.computerCitation | pub_title=IEEE Transactions on Vehicular Technology|volume=72|journal_number=12|start_pag=16637|end_pag=16649 | spa |