Show simple item record

dc.contributor.authorSantana Mancilla, Pedro C.
dc.contributor.authorCastrejón Mejía, Oscar E.
dc.contributor.authorFajardo Flores, Silvia B.
dc.contributor.authorAnido Rifón, Luis Eulogio 
dc.date.accessioned2024-03-20T08:21:04Z
dc.date.available2024-03-20T08:21:04Z
dc.date.issued2023-11-21
dc.identifier.citationInformation, 14(12): 625 (2023)spa
dc.identifier.issn20782489
dc.identifier.urihttp://hdl.handle.net/11093/6448
dc.description.abstractWearable Internet of Medical Things (IoMT) technology, designed for non-invasive respiratory monitoring, has demonstrated considerable promise in the early detection of severe diseases. This paper introduces the application of supervised machine learning techniques to predict respiratory abnormalities through frequency data analysis. The principal aim is to identify respiratory-related health risks in older adults using data collected from non-invasive wearable devices. This article presents the development, assessment, and comparison of three machine learning models, underscoring their potential for accurately predicting respiratory-related health issues in older adults. The convergence of wearable IoMT technology and machine learning holds immense potential for proactive and personalized healthcare among older adults, ultimately enhancing their quality of life.spa
dc.language.isoengspa
dc.publisherInformationspa
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titlePredicting abnormal respiratory patterns in older adults using supervised machine learning on Internet of medical things respiratory frequency dataeng
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/info14120625
dc.identifier.editorhttps://www.mdpi.com/2078-2489/14/12/625spa
dc.publisher.departamentoEnxeñaría telemáticaspa
dc.publisher.grupoinvestigacionGIST (Grupo de Enxeñería de Sistemas Telemáticos)spa
dc.subject.unesco3399 Otras Especialidades Tecnológicasspa
dc.date.updated2024-03-20T08:10:05Z
dc.computerCitationpub_title=Information|volume=14|journal_number=12|start_pag=625|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International