Show simple item record

dc.contributor.authorÁlvarez Bermúdez, César 
dc.contributor.authorAnca Couce, Andrés
dc.contributor.authorChapela López, Sergio 
dc.contributor.authorScharler, Robert
dc.contributor.authorBuchmayr, Markus
dc.contributor.authorGómez Rodríguez, Miguel Ángel 
dc.contributor.authorPorteiro Fresco, Jacobo 
dc.date.accessioned2024-02-29T10:37:21Z
dc.date.available2024-02-29T10:37:21Z
dc.date.issued2023-10
dc.identifier.citationRenewable Energy, 215, 119003 (2023)spa
dc.identifier.issn09601481
dc.identifier.urihttp://hdl.handle.net/11093/6387
dc.description.abstractThis work presents a three-dimensional Computational Fluid Dynamics study of a small-scale biomass combustion system operating with low primary air ratios. The Eulerian Biomass Thermal Conversion Model (EBiTCoM) was adapted to incorporate a pyrolysis mechanism based on the detailed Ranzi-Anca-Couce (RAC) scheme. Two scenarios were simulated using woodchips with 8% and 30% moisture content, and the results were validated against experimental data, including in-flame and bed measurements. The model accurately predicted bed temperature profiles and the influence of fuel moisture content on the pyrolysis and drying fronts, as well as on the distribution of volatiles and temperatures above the solid fuel bed. For the 8% moisture content case, the average gas temperature above the bed is approximately 700 °C, while for the 30% case, it drops to around 400 °C. The lower temperatures hinder the tar cracking reaction, resulting in a 25% higher tar content in the producer gas for the 30% moisture content fuel. The lower part of the bed consists of a thick layer of char undergoing reduction reactions, similar to that of an updraft gasifier. The developed model can accurately simulate biomass combustion systems with solid fuel beds consisting of numerous particles, while maintaining low computational requirements.spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2021-126569OB-I00spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PRE2019-090110spa
dc.description.sponsorshipUniversidade de Vigo/CISUGspa
dc.language.isoengspa
dc.publisherRenewable Energyspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-126569OB-I00/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleValidation of a biomass conversion mechanism by Eulerian modelling of a fixed-bed system under low primary air conditionsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.renene.2023.119003
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S0960148123009096spa
dc.publisher.departamentoEnxeñaría mecánica, máquinas e motores térmicos e fluídosspa
dc.publisher.grupoinvestigacionGTE (Grupo de Tecnoloxía Enerxética)spa
dc.subject.unesco3303.06 Tecnología de la Combustiónspa
dc.date.updated2024-02-29T10:36:21Z
dc.computerCitationpub_title=Renewable Energy|volume=215|journal_number=|start_pag=119003|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International