dc.contributor.author | García Lojo, Daniel | |
dc.contributor.author | Modin, Evgeny | |
dc.contributor.author | Gómez Graña, Sergio | |
dc.contributor.author | Impéror-Clerc, Marianne | |
dc.contributor.author | Chuvilin, Andrey | |
dc.contributor.author | Pastoriza Santos, Isabel | |
dc.contributor.author | Pérez Juste, Jorge | |
dc.contributor.author | Constantin, Doru | |
dc.contributor.author | Hamon, Cyrille | |
dc.date.accessioned | 2024-02-07T14:09:59Z | |
dc.date.issued | 2021-07-02 | |
dc.identifier.citation | Advanced Functional Materials, 31(27): 2101869 (2021) | spa |
dc.identifier.issn | 1616301X | |
dc.identifier.issn | 16163028 | |
dc.identifier.uri | http://hdl.handle.net/11093/6067 | |
dc.description.abstract | Organizing nanoparticles (NPs) into periodic structures is a central goal in materials science. Despite progress in the last decades, it is still challenging to produce macroscopic assemblies reliably. In this work, the analysis of the pervaporation‐induced organization of gold octahedra into supercrystals within microfluidic channels using a combination of X‐ray scattering techniques and FIB‐SEM tomography is reported. The results reveal the formation of a single‐domain supercrystal with a monoclinic C2/m symmetry and long‐range order extending over the dimensions of the microfluidic channel, covering at least 1.7 × 0.3 mm 2 . Time‐resolved small angle X‐ray scattering analysis shows that the formation of the superlattice involves an accumulation of the NPs within the channel before the nucleation and growth of the supercrystal. The orientation of the crystal remains unchanged during its formation, suggesting a growth mechanism directed by the channel interface. Together, these results show the potential application of the pervaporation strategy to providing spatially determined control over NP crystallization, which can be used for the rational fabrication of nanomaterial architectures. | spa |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad | Ref. MAT2016-77809-R | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PID2019-108954RB-I00 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. GRC ED431C 2016–048 | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. BES-2017-081670 | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. IJCI-2016-29108 | spa |
dc.language.iso | eng | spa |
dc.publisher | Advanced Functional Materials | spa |
dc.relation | info:eu-repo/grantAgreement/MINECO//MAT2016-77809-R/ES/ | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108954RB-I00/ES | |
dc.rights | Reservados todos os dereitos | |
dc.title | Structure and formation kinetics of millimeter‐size single domain supercrystals | en |
dc.type | article | spa |
dc.rights.accessRights | closedAccess | spa |
dc.identifier.doi | 10.1002/adfm.202101869 | |
dc.identifier.editor | https://onlinelibrary.wiley.com/doi/10.1002/adfm.202101869 | spa |
dc.publisher.departamento | Química Física | spa |
dc.publisher.grupoinvestigacion | NanoBioMateriais Funcionais | spa |
dc.subject.unesco | 2307 Química Física | spa |
dc.date.embargoEndDate | indefinido | spa |
dc.date.updated | 2024-02-06T10:45:16Z | |
dc.computerCitation | pub_title=Advanced Functional Materials|volume=31|journal_number=27|start_pag=2101869|end_pag= | spa |