Show simple item record

dc.contributor.authorVélez de Mendizabal, Iñaki
dc.contributor.authorBasto Fernandes, Vitor
dc.contributor.authorEzpeleta, Enaitz
dc.contributor.authorMéndez Reboredo, José Ramón 
dc.contributor.authorGómez Meire, Silvana 
dc.contributor.authorZurutuza, Urko
dc.date.accessioned2024-01-17T09:41:09Z
dc.date.available2024-01-17T09:41:09Z
dc.date.issued2023-02-08
dc.identifier.citationPeerJ Computer Science, 9, e1240 (2023)spa
dc.identifier.issn23765992
dc.identifier.urihttp://hdl.handle.net/11093/5680
dc.description.abstractDespite new developments in machine learning classification techniques, improving the accuracy of spam filtering is a difficult task due to linguistic phenomena that limit its effectiveness. In particular, we highlight polysemy, synonymy, the usage of hypernyms/hyponyms, and the presence of irrelevant/confusing words. These problems should be solved at the pre-processing stage to avoid using inconsistent information in the building of classification models. Previous studies have suggested that the use of synset-based representation strategies could be successfully used to solve synonymy and polysemy problems. Complementarily, it is possible to take advantage of hyponymy/hypernymy-based to implement dimensionality reduction strategies. These strategies could unify textual terms to model the intentions of the document without losing any information ( e.g. , bringing together the synsets “viagra”, “ciallis”, “levitra” and other representing similar drugs by using “virility drug” which is a hyponym for all of them). These feature reduction schemes are known as lossless strategies as the information is not removed but only generalised. However, in some types of text classification problems (such as spam filtering) it may not be worthwhile to keep all the information and let dimensionality reduction algorithms discard information that may be irrelevant or confusing. In this work, we are introducing the feature reduction as a multi-objective optimisation problem to be solved using a Multi-Objective Evolutionary Algorithm (MOEA). Our algorithm allows, with minor modifications, to implement lossless (using only semantic-based synset grouping), low-loss (discarding irrelevant information and using semantic-based synset grouping) or lossy (discarding only irrelevant information) strategies. The contribution of this study is two-fold: (i) to introduce different dimensionality reduction methods (lossless, low-loss and lossy) as an optimization problem that can be solved using MOEA and (ii) to provide an experimental comparison of lossless and low-loss schemes for text representation. The results obtained support the usefulness of the low-loss method to improve the efficiency of classifiers.en
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. TIN2017-84658-C2-1-Rspa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. TIN2017-84658-C2-2-Rspa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2022/03-GRCspa
dc.description.sponsorshipEusko Jaurlaritza | Ref. IT1676-22spa
dc.description.sponsorshipFundação para a Ciência e a Tecnologia | Ref. UIDB/04466/2020spa
dc.description.sponsorshipFundação para a Ciência e a Tecnologia | Ref. UIDP/04466/2020spa
dc.language.isoengspa
dc.publisherPeerJ Computer Sciencespa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84658-C2-1-R/ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84658-C2-2-R/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://www.creativecommons.org/licenses/by/4.0/
dc.titleMulti-objective evolutionary optimization for dimensionality reduction of texts represented by synsetsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.7717/peerj-cs.1240
dc.identifier.editorhttps://peerj.com/articles/cs-1240spa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionSistemas Informáticos de Nova Xeraciónspa
dc.publisher.grupoinvestigacionGrupo de Informática Gráfica y Multimedia (Gig)spa
dc.subject.unesco3304 Tecnología de Los Ordenadoresspa
dc.date.updated2024-01-15T09:58:00Z
dc.computerCitationpub_title=PeerJ Computer Science|volume=9|journal_number=|start_pag=e1240|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International