Show simple item record

dc.contributor.authorBoullosa González, Pablo
dc.contributor.authorGarea Espejo, Adrián
dc.contributor.authorArea Carracedo, Iván Carlos 
dc.contributor.authorNieto Roig, Juan José
dc.contributor.authorMira Pérez, Jorge
dc.date.accessioned2023-12-19T11:12:20Z
dc.date.available2023-12-19T11:12:20Z
dc.date.issued2022-07-18
dc.identifier.citationMathematics, 10(14): 2494 (2022)spa
dc.identifier.issn22277390
dc.identifier.urihttp://hdl.handle.net/11093/5543
dc.description.abstractThe evolution of some epidemics, such as influenza, demonstrates common patterns both in different regions and from year to year. On the contrary, epidemics such as the novel COVID-19 show quite heterogeneous dynamics and are extremely susceptible to the measures taken to mitigate their spread. In this paper, we propose empirical dynamic modeling to predict the evolution of influenza in Spain’s regions. It is a non-parametric method that looks into the past for coincidences with the present to make the forecasts. Here, we extend the method to predict the evolution of other epidemics at any other starting territory and we also test this procedure with Spanish COVID-19 data. We finally build influenza and COVID-19 networks to check possible coincidences in the geographical distribution of both diseases. With this, we grasp the uniqueness of the geographical dynamics of COVID-19.spa
dc.description.sponsorshipXunta de Galiciaspa
dc.description.sponsorshipUniversidad de Santiago de Compostelaspa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2020-113275GB-I00spa
dc.description.sponsorshipInstituto de Salud Carlos III | Ref. COV20/00617spa
dc.language.isoengspa
dc.publisherMathematicsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113275GB-I00/ES/ECUACIONES DIFERENCIALES ORDINARIAS NO LINEALES Y APLICACIONES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleLeveraging geographically distributed data for influenza and SARS-CoV-2 non-parametric forecastingeng
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/math10142494
dc.identifier.editorhttps://www.mdpi.com/2227-7390/10/14/2494spa
dc.publisher.departamentoMatemática aplicada IIspa
dc.publisher.grupoinvestigacionGRUPO DE ENXEÑARÍA FÍSICA (OF1)spa
dc.subject.unesco1206.02 Ecuaciones Diferencialesspa
dc.subject.unesco1206.12 Ecuaciones Diferenciales Ordinariasspa
dc.subject.unesco2420.08 Virus Respiratoriosspa
dc.date.updated2023-12-09T08:24:34Z
dc.computerCitationpub_title=Mathematics|volume=10|journal_number=14|start_pag=2494|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International