BibliotecaPortal de investigación
es | gl
  • Home
  • Contact us
  • Give feedback
  • Help
    • About Investigo
    • Search and Find
    • Submit
    • Intellectual Property
    • Open Access Policy
  • Links
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • UNESCO Nomenclature
    • español
    • English
    • Gallegan
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of InvestigoAuthorsTitles Materias Unesco Research GroupsType of ContentsJournal TitlesThis CollectionAuthorsTitlesUNESCO SubjectsResearch GroupsType of ContentsJournal Titles

Library guides

Self-archivingRequest PermissionRelated guides

Statistics

View Usage Statistics

Predictive model of explosive detonation parameters from an equation of state based on detonation velocity

García Bastante, Fernando MariaAutor UVIGO; Araújo Fernández, MaríaAutor UVIGO; Giráldez Pérez, EduardoAutor UVIGO
DATE: 2022-03
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/5528
EDITED VERSION: http://xlink.rsc.org/?DOI=D2CP00085G
UNESCO SUBJECT: 3305.06 Ingeniería Civil ; 2307 Química Física
DOCUMENT TYPE: article

ABSTRACT

This article describes a predictive model of explosive detonation velocity and pressure based on first-order approximation of the detonation velocity equation. Detonation pressure was calculated from equations derived from the ideal detonation theory since that pressure is functionally related to detonation velocity. In the model calibration process, several product formation hierarchies were explored, with the best results yielded by the Kamlet and Jacobs (KJ) hierarchy. The predictive capacity of our model (labelled DEoS) was tested using different experimental databases, and was compared with predictions by thermochemical models (BKW-RR, JCZ3-J and JCZS) and by the empirical KJ method. The prediction values obtained using an experimental database of 238 explosive substances (75 singles and 163 composites), for a range of densities (1 g cc −1 to 2 g cc −1 ), were excellent in terms of both velocity and pressure, with root mean square error values of 1.7% (519 data items) and 6.0% (263 data items), respectively. We analysed results, broken down by explosive type, in detail, finding that the model residuals did not correlate with the predictor variables and also that the model predicts reasonable values for other parameters in the detonation state, such as density, the Jones parameter, and the Grüneisen parameter.
Show full item record

Files in this item

[PDF]
Name:
2022_bastante_detonation_veloc ...
Size:
2.275Mb
Format:
PDF
View/Open

Send to

MendeleyZoteroRefworks

The Institutional Repository of the University of Vigo Investigo is disseminated in:

University library
Rúa Leonardo da Vinci, s/n
As Lagoas, Marcosende
36310 Vigo

Location

Information
+34 986 813 821
investigo@uvigo.gal

Accessibility | Legal notice | Data protection
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.gal

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL