Show simple item record

dc.contributor.authorPerez Rodriguez, Martín 
dc.contributor.authorLópez Cabo, Marta
dc.contributor.authorBalsa Canto, Eva
dc.contributor.authorGarcía, Míriam R.
dc.date.accessioned2023-09-27T07:18:38Z
dc.date.available2023-09-27T07:18:38Z
dc.date.issued2023-07-28
dc.identifier.citationInternational Journal of Molecular Sciences, 24(15): 12132 (2023)spa
dc.identifier.issn14220067
dc.identifier.urihttp://hdl.handle.net/11093/5178
dc.description.abstractUnravelling the mechanisms of action of disinfectants is essential to optimise dosing regimes and minimise the emergence of antimicrobial resistance. In this work, we examined the mechanisms of action of a commonly used disinfectant—benzalkonium chloride (BAC)—over a significant pathogen—L. monocytogenes—in the food industry. For that purpose, we used modelling at multiple scales, from the cell membrane to cell population inactivation. Molecular modelling revealed that the integration of the BAC into the membrane requires three phases: (1) the approaching of BAC to the cellular membrane, (2) the absorption of BAC to its surface, and (3) the integration of the compound into the lipid bilayer, where it remains at least for several nanoseconds, probably destabilising the membrane. We hypothesised that the equilibrium of adsorption, although fast, was limiting for sufficiently large BAC concentrations, and a kinetic model was derived to describe time–kill curves of a large population of cells. The model was tested and validated with time series data of free BAC decay and time–kill curves of L. monocytogenes at different inocula and BAC dose concentrations. The knowledge gained from the molecular simulation plus the proposed kinetic model offers the means to design novel disinfection processes rationally.spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. RTI2018-093560-J-I00spa
dc.description.sponsorshipCentro Superior de Investigaciones Científicas | Ref. 20213AT001spa
dc.description.sponsorshipXunta de Galicia | Ref. GAIN IN607B 2020/03spa
dc.language.isoengspa
dc.publisherInternational Journal of Molecular Sciencesspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093560-J-I00/ES/ENGENIERIA DE PROCESOS BASADA EN MODELADO PARA EL CONTROL DE LA RESISTENCIA ANTIMICROBIANA EN LA INDUSTRIA ALIMENTARIA 4.0
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleMechanisms of Listeria monocytogenes disinfection with benzalkonium chloride: from molecular dynamics to kinetics of time-kill curvesen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/ijms241512132
dc.identifier.editorhttps://www.mdpi.com/1422-0067/24/15/12132spa
dc.publisher.departamentoFísica aplicadaspa
dc.publisher.grupoinvestigacionFísica Aplicada 2spa
dc.subject.unesco3206.11 Toxicidad de Los Alimentosspa
dc.subject.unesco3309.15 Higiene de Los Alimentosspa
dc.date.updated2023-09-27T07:16:53Z
dc.computerCitationpub_title=International Journal of Molecular Sciences|volume=24|journal_number=15|start_pag=12132|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International