Comparison of moisture sources and sinks estimated with different versions of FLEXPART and FLEXPART-WRF models forced with ECMWF reanalysis data
DATE:
2023-02-01
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/4776
UNESCO SUBJECT: 25 Ciencias de la Tierra y del Espacio ; 2501.10 Estructura Atmosférica ; 2502 Climatología
DOCUMENT TYPE: article
ABSTRACT
Moisture transport and changes in the source–sink relationship play a vital role in the atmospheric branch of the hydrological cycle. Lagrangian approaches have emerged as the dominant tool to account for estimations of moisture sources and sinks; those that use the FLEXPART model fed by ERA-Interim reanalysis are most commonly used. With the release of the higher spatial resolution ERA5, it is crucial to compare the representation of moisture sources and sinks using the FLEXPART Lagrangian model with different resolutions in the input data, as well as its version for WRF-ARW input data, the FLEXPART-WRF. In this study, we compare this model for 2014 and moisture sources for the Iberian Peninsula and moisture sinks of North Atlantic and Mediterranean. For comparison criteria, we considered FLEXPARTv9.0 outputs forced by ERA-Interim reanalysis as “control” values. It is concluded that FLEXPARTv10.3 forced with ERA5 data at various horizontal resolutions (0.5° and 1°) represents moisture source and sink zones as represented forced by ERA-Interim (1°). In addition, the version fed with the dynamic downscaling WRF-ARW outputs (∼20 km), previously forced with ERA5, also represents these patterns accurately, allowing this tool to be used in future investigations at higher resolutions and for regional domains. SIGNIFICANCE STATEMENT: The FLEXPART dispersion model forced with ERA5 reanalysis data at various resolutions represents moisture source and sink zones compared to when it is forced by ERA-Interim. When the Weather Research and Forecasting Model is used to dynamically downscale ERA5, FLEXPART-WRF can also represent moisture sources and sinks, allowing this tool to be used in future investigations requiring higher resolution and regional domains and on regions with a predominance of complex orography due to its ability to represent local moisture transport.