Show simple item record

dc.contributor.authorDíaz Redondo, Rebeca Pilar 
dc.contributor.authorFernández Vilas, Ana 
dc.contributor.authorRamos Merino, Mateo 
dc.contributor.authorValladares Rodríguez, Sonia Maria 
dc.contributor.authorTorres Guijarro, Maria Soledad 
dc.contributor.authorHafez, Manar Mohamed
dc.date.accessioned2023-04-26T09:56:42Z
dc.date.available2023-04-26T09:56:42Z
dc.date.issued2023-03-29
dc.identifier.citationApplied Sciences, 13(7): 4341 (2023)spa
dc.identifier.issn20763417
dc.identifier.urihttp://hdl.handle.net/11093/4764
dc.description.abstractSocial relationships in the digital sphere are becoming more usual and frequent, and they constitute a very important aspect for all of us. Violent interactions in this sphere are very frequent, and have serious effects on the victims. Within this global scenario, there is one kind of digital violence that is becoming really worrying: sexism against women. Sexist comments that are publicly posted in social media (newspaper comments, social networks, etc.), usually obtain a lot of attention and become viral, with consequent damage to the persons involved. In this paper, we introduce an anti-sexism alert system, based on natural language processing (NLP) and artificial intelligence (AI), that analyzes any public post, and decides if it could be considered a sexist comment or not. Additionally, this system also works on analyzing all the public comments linked to any multimedia content (piece of news, video, tweet, etc.) and decides, using a color-based system similar to traffic lights, if there is sexism in the global set of posts. We have created a labeled data set in Spanish, since the majority of studies focus on English, to train our system, which offers a very good performance after the validation experiments.en
dc.description.sponsorshipCátedra Feminismos 4.0 Depo-Uvigospa
dc.description.sponsorshipXunta de Galiciaspa
dc.description.sponsorshipEuropean Unionspa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2020-113795RB-C33spa
dc.language.isoengspa
dc.publisherApplied Sciencesspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113795RB-C33/ES
dc.rightsAttribution 4.0 International
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.titleAnti-sexism alert system: identification of sexist comments on social media using aI techniquesen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/app13074341
dc.identifier.editorhttps://www.mdpi.com/2076-3417/13/7/4341spa
dc.publisher.departamentoEnxeñaría telemáticaspa
dc.publisher.departamentoTeoría do sinal e comunicaciónsspa
dc.publisher.grupoinvestigacionInformation and Computing Laboratoryspa
dc.publisher.grupoinvestigacionGrupo de Tecnoloxías Multimediaspa
dc.subject.unesco1203.04 Inteligencia Artificialspa
dc.subject.unesco5910.02 Medios de Comunicación de Masasspa
dc.subject.unesco5206.09 Sexospa
dc.date.updated2023-04-26T09:48:25Z
dc.computerCitationpub_title=Applied Sciences|volume=13|journal_number=7|start_pag=4341|end_pag=spa


Files in this item

[PDF]

    Show simple item record