Show simple item record

dc.contributor.authorAstray Dopazo, Gonzalo 
dc.contributor.authorSoria Lopez, Anton 
dc.contributor.authorBarreiro Alonso, Enrique 
dc.contributor.authorMejuto Fernández, Juan Carlos 
dc.contributor.authorCid Samamed, Antonio 
dc.date.accessioned2023-04-12T12:30:55Z
dc.date.available2023-04-12T12:30:55Z
dc.date.issued2023-03-15
dc.identifier.citationNanomaterials, 13(6): 1061 (2023)spa
dc.identifier.issn20794991
dc.identifier.urihttp://hdl.handle.net/11093/4697
dc.description.abstractNowadays, there is an extensive production and use of plastic materials for different industrial activities. These plastics, either from their primary production sources or through their own degradation processes, can contaminate ecosystems with micro- and nanoplastics. Once in the aquatic environment, these microplastics can be the basis for the adsorption of chemical pollutants, favoring that these chemical pollutants disperse more quickly in the environment and can affect living beings. Due to the lack of information on adsorption, three machine learning models (random forest, support vector machine, and artificial neural network) were developed to predict different microplastic/water partition coefficients (log Kd) using two different approximations (based on the number of input variables). The best-selected machine learning models present, in general, correlation coefficients above 0.92 in the query phase, which indicates that these types of models could be used for the rapid estimation of the absorption of organic contaminants on microplastics.en
dc.description.sponsorshipMinisterio de Universidades | Ref. FPU2020/06140spa
dc.language.isoengspa
dc.publisherNanomaterialsspa
dc.relationinfo:eu-repo/grantAgreement/MIU//FPU2020/06140/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleMachine learning to predict the adsorption capacity of microplasticsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/nano13061061
dc.identifier.editorhttps://www.mdpi.com/2079-4991/13/6/1061spa
dc.publisher.departamentoQuímica Físicaspa
dc.publisher.departamentoQuímica analítica e alimentariaspa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionInvestigacións Agrarias e Alimentariasspa
dc.publisher.grupoinvestigacionGrupo de Informática Gráfica y Multimedia (Gig)spa
dc.subject.unesco2210 Química Físicaspa
dc.subject.unesco1203.17 Informáticaspa
dc.subject.unesco2391 Química Ambientalspa
dc.date.updated2023-04-12T11:28:01Z
dc.computerCitationpub_title=Nanomaterials|volume=13|journal_number=6|start_pag=1061|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International