dc.contributor.author | Martinez Estevez, Iván | |
dc.contributor.author | Tagliafierro, B. | |
dc.contributor.author | El Rahi, J. | |
dc.contributor.author | Domínguez Alonso, José Manuel | |
dc.contributor.author | Cabrera Crespo, Alejandro Jacobo | |
dc.contributor.author | Troch, P. | |
dc.contributor.author | Gómez Gesteira, Ramon | |
dc.date.accessioned | 2023-04-11T08:29:57Z | |
dc.date.available | 2023-04-11T08:29:57Z | |
dc.date.issued | 2023-05 | |
dc.identifier.citation | Computer Methods in Applied Mechanics and Engineering, 410, 115989 (2023) | spa |
dc.identifier.issn | 00457825 | |
dc.identifier.uri | http://hdl.handle.net/11093/4680 | |
dc.description.abstract | This work proposes a two-way coupling between a Smoothed Particle Hydrodynamics (SPH) model-based named DualSPHysics and a Finite Element Analysis (FEA) method to solve fluid–structure interaction (FSI). Aiming at having a computationally efficient solution via spatial adjustable resolutions for the two phases, the SPH-FEA coupling herein presented implements the Euler–Bernoulli beam model, based on a simplified model that incorporates axial and flexural deformations, to introduce a solid solver in the DualSPHysics framework. This approach is particularly functional and very precise for slender beam elements undergoing large displacements, and large deformations can also be experienced by the structural elements due to the non-linear FEA implementation via a co-rotational formulation. In this two-way coupling, the structure is discretised in the SPH domain using boundary particles on which the forces exerted by fluid phases are computed. Such forces are passed over to the FEA structural solver that updates the beam shape and, finally, the particle positions are subsequently reshuffled to represent the deformed shape at each time step. The SPH-FEA coupling is validated against four reference cases, which prove the model to be as accurate as other approaches presented in literature. | spa |
dc.description.sponsorship | Ministerio de Ciencia e Innovación | Ref. PID2020-113245RB-I00 | spa |
dc.description.sponsorship | Ministerio de Ciencia e Innovación | Ref. TED2021-129479A-I00 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. ED431C 2021/44 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. ED481A-2021/337 | spa |
dc.description.sponsorship | Universidade de Vigo/CISUG | |
dc.language.iso | eng | spa |
dc.publisher | Computer Methods in Applied Mechanics and Engineering | spa |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113245RB-I00/ES/SUPERVIVENCIA DE DISPOSITIVOS CAPTADORES DE ENERGIA DE LAS OLAS | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-129479A-I00/ES | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Coupling an SPH-based solver with an FEA structural solver to simulate free surface flows interacting with flexible structures | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1016/j.cma.2023.115989 | |
dc.identifier.editor | https://linkinghub.elsevier.com/retrieve/pii/S0045782523001123 | spa |
dc.publisher.departamento | Física aplicada | spa |
dc.publisher.grupoinvestigacion | EphysLab | spa |
dc.subject.unesco | 2204 Física de Fluidos | spa |
dc.date.updated | 2023-03-29T07:02:28Z | |
dc.computerCitation | pub_title=Computer Methods in Applied Mechanics and Engineering|volume=410|journal_number=|start_pag=115989|end_pag= | spa |