Show simple item record

dc.contributor.authorNogueira Rodríguez, Alba 
dc.contributor.authorGonzález Peña, Daniel 
dc.contributor.authorReboiro Jato, Miguel 
dc.contributor.authorLópez Fernández, Hugo 
dc.date.accessioned2023-04-10T11:55:13Z
dc.date.available2023-04-10T11:55:13Z
dc.date.issued2023-03-03
dc.identifier.citationDiagnostics, 13(5): 966 (2023)spa
dc.identifier.issn20754418
dc.identifier.urihttp://hdl.handle.net/11093/4679
dc.description.abstractDeep learning object-detection models are being successfully applied to develop computer-aided diagnosis systems for aiding polyp detection during colonoscopies. Here, we evidence the need to include negative samples for both (i) reducing false positives during the polyp-finding phase, by including images with artifacts that may confuse the detection models (e.g., medical instruments, water jets, feces, blood, excessive proximity of the camera to the colon wall, blurred images, etc.) that are usually not included in model development datasets, and (ii) correctly estimating a more realistic performance of the models. By retraining our previously developed YOLOv3-based detection model with a dataset that includes 15% of additional not-polyp images with a variety of artifacts, we were able to generally improve its F1 performance in our internal test datasets (from an average F1 of 0.869 to 0.893), which now include such type of images, as well as in four public datasets that include not-polyp images (from an average F1 of 0.695 to 0.722).en
dc.description.sponsorshipMinisterio de Ciencia y Competitividad y Ministerio de Ciencia e Innovación | Ref. DPI2017-87494-Rspa
dc.description.sponsorshipMinisterio de Ciencia y Competitividad y Ministerio de Ciencia e Innovación | Ref. PDC2021-121644-I00spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C2018/55-GRCspa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2022/03-GRCspa
dc.language.isoengspa
dc.publisherDiagnosticsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87494-R/ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121644-I00/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleNegative samples for improving object detection—A case study in aI-assisted colonoscopy for polyp detectionen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/diagnostics13050966
dc.identifier.editorhttps://www.mdpi.com/2075-4418/13/5/966spa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionSistemas Informáticos de Nova Xeraciónspa
dc.subject.unesco3207.03 Carcinogénesisspa
dc.subject.unesco3210 Medicina Preventivaspa
dc.subject.unesco1203.20 Sistemas de Control Médicospa
dc.date.updated2023-04-10T11:49:16Z
dc.computerCitationpub_title=Diagnostics|volume=13|journal_number=5|start_pag=966|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International