dc.contributor.author | González Baldonedo, Jacobo | |
dc.contributor.author | Fernández García, José Ramón | |
dc.contributor.author | Magaña, Antonio | |
dc.contributor.author | Quintanilla, Ramón | |
dc.date.accessioned | 2023-03-15T11:42:00Z | |
dc.date.available | 2023-03-15T11:42:00Z | |
dc.date.issued | 2023-01-05 | |
dc.identifier.citation | Zeitschrift für angewandte Mathematik und Physik, 74(35): 1-25 (2023) | spa |
dc.identifier.issn | 00442275 | |
dc.identifier.issn | 14209039 | |
dc.identifier.uri | http://hdl.handle.net/11093/4598 | |
dc.description.abstract | We study the one-dimensional problem for the linear strain gradient porous elasticity. Our aim is to analyze the behavior of the solutions with respect to the time variable when a dissipative structural mechanism is introduced in the system. We consider five different scenarios: hyperviscosity and viscosity for the displacement component and hyperviscoporosity, viscoporosity and weak viscoporosity for the porous component. We only apply one of these mechanisms at a time. We obtain the exponential decay of the solutions in the case of viscosity and a similar result for the viscoporosity. Nevertheless, in the hyperviscosity case (respectively hyperviscoporosity) the decay is slow and it can be controlled at least by t−1/2. Slow decay is also expected for the weak viscoporosity in the generic case, although a particular combination of the constitutive parameters leads to the exponential decay. We want to emphasize the fact that the hyperviscosity (respectively hyperviscoporosity) is a stronger dissipative mechanism than the viscosity (respectively viscoporosity); however, in this situation, the second mechanism seems to be more “efficient” than the first one in order to pull along the solutions rapidly to zero. This is a striking fact that we have not seen previously at any other linear coupling system. Finally, we also present some numerical simulations by using the finite element method and the Newmark-β scheme to show the behavior of the energy decay of the solutions to the above problems, including a comparison between the hyperviscosity and the viscosity cases. | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PGC2018‐096696‐B‐I00 | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PID2019‐105118GB‐I00 | spa |
dc.description.sponsorship | Universidade de Vigo/CISUG | spa |
dc.language.iso | eng | spa |
dc.publisher | Zeitschrift für angewandte Mathematik und Physik | spa |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096696-B-I00/ES/ANALISIS MATEMATICO Y SIMULACION NUMERICA DE PROBLEMAS CON REMODELACION OSEA. APLICACIONES EN EL DISEÑO DE IMPLANTES DENTALES Y PROTESIS | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105118GB-I00/ES/ANALISIS MATEMATICO APLICADO A LA TERMOMECANICA | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Decay for strain gradient porous elastic waves | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1007/s00033-022-01930-6 | |
dc.identifier.editor | https://link.springer.com/10.1007/s00033-022-01930-6 | spa |
dc.publisher.departamento | Enxeñaría mecánica, máquinas e motores térmicos e fluídos | spa |
dc.publisher.departamento | Matemática aplicada I | spa |
dc.publisher.grupoinvestigacion | Deseño e Simulación Numérica en Enxeñaría Mecánica | spa |
dc.subject.unesco | 12 Matemáticas | spa |
dc.subject.unesco | 1206 Análisis Numérico | spa |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | spa |
dc.date.updated | 2023-03-13T15:21:00Z | |
dc.computerCitation | pub_title=Zeitschrift für angewandte Mathematik und Physik|volume=74|journal_number=35|start_pag=1|end_pag=25 | spa |