Show simple item record

dc.contributor.authorGonzález Baldonedo, Jacobo 
dc.contributor.authorFernández García, José Ramón 
dc.contributor.authorMagaña, Antonio
dc.contributor.authorQuintanilla, Ramón
dc.date.accessioned2023-03-15T11:42:00Z
dc.date.available2023-03-15T11:42:00Z
dc.date.issued2023-01-05
dc.identifier.citationZeitschrift für angewandte Mathematik und Physik, 74(35): 1-25 (2023)spa
dc.identifier.issn00442275
dc.identifier.issn14209039
dc.identifier.urihttp://hdl.handle.net/11093/4598
dc.description.abstractWe study the one-dimensional problem for the linear strain gradient porous elasticity. Our aim is to analyze the behavior of the solutions with respect to the time variable when a dissipative structural mechanism is introduced in the system. We consider five different scenarios: hyperviscosity and viscosity for the displacement component and hyperviscoporosity, viscoporosity and weak viscoporosity for the porous component. We only apply one of these mechanisms at a time. We obtain the exponential decay of the solutions in the case of viscosity and a similar result for the viscoporosity. Nevertheless, in the hyperviscosity case (respectively hyperviscoporosity) the decay is slow and it can be controlled at least by t−1/2. Slow decay is also expected for the weak viscoporosity in the generic case, although a particular combination of the constitutive parameters leads to the exponential decay. We want to emphasize the fact that the hyperviscosity (respectively hyperviscoporosity) is a stronger dissipative mechanism than the viscosity (respectively viscoporosity); however, in this situation, the second mechanism seems to be more “efficient” than the first one in order to pull along the solutions rapidly to zero. This is a striking fact that we have not seen previously at any other linear coupling system. Finally, we also present some numerical simulations by using the finite element method and the Newmark-β scheme to show the behavior of the energy decay of the solutions to the above problems, including a comparison between the hyperviscosity and the viscosity cases.spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PGC2018‐096696‐B‐I00spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2019‐105118GB‐I00spa
dc.description.sponsorshipUniversidade de Vigo/CISUGspa
dc.language.isoengspa
dc.publisherZeitschrift für angewandte Mathematik und Physikspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096696-B-I00/ES/ANALISIS MATEMATICO Y SIMULACION NUMERICA DE PROBLEMAS CON REMODELACION OSEA. APLICACIONES EN EL DISEÑO DE IMPLANTES DENTALES Y PROTESIS
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105118GB-I00/ES/ANALISIS MATEMATICO APLICADO A LA TERMOMECANICA
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleDecay for strain gradient porous elastic wavesen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1007/s00033-022-01930-6
dc.identifier.editorhttps://link.springer.com/10.1007/s00033-022-01930-6spa
dc.publisher.departamentoEnxeñaría mecánica, máquinas e motores térmicos e fluídosspa
dc.publisher.departamentoMatemática aplicada Ispa
dc.publisher.grupoinvestigacionDeseño e Simulación Numérica en Enxeñaría Mecánicaspa
dc.subject.unesco12 Matemáticasspa
dc.subject.unesco1206 Análisis Numéricospa
dc.subject.unesco1202 Análisis y Análisis Funcionalspa
dc.date.updated2023-03-13T15:21:00Z
dc.computerCitationpub_title=Zeitschrift für angewandte Mathematik und Physik|volume=74|journal_number=35|start_pag=1|end_pag=25spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International