Show simple item record

dc.contributor.authorNovo Gómez, Ana 
dc.contributor.authorGonzález Jorge, Higinio 
dc.contributor.authorMartínez Sánchez, Joaquín 
dc.contributor.authorBalado Frías, Jesús 
dc.date.accessioned2023-03-09T12:35:24Z
dc.date.available2023-03-09T12:35:24Z
dc.date.issued2022-05-30
dc.identifier.citationISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 959-966 (2022)spa
dc.identifier.issn21949034
dc.identifier.urihttp://hdl.handle.net/11093/4570
dc.description.abstractSpain is included in the top five European countries with the highest number of wildfires. The occurrence and magnitude of forest fires involves aspects of a very diverse nature, from those of a socio-economic, climatic, or physiographic nature, to those concerning fuel or the availability and quantity of resources and means of extinction. The distribution of wildfires in Galicia is not random and that fire occurrence may depend on ownership conflicts also a spatial dependence between productive or non-productive area exists. Satellite data play a major role in providing knowledge about fires by delivering rapid information to map fire-damaged areas precisely and promptly. In addition, the availability of large-scale data and the high temporal resolution offered by the Sentinel-2 satellite enables to classify and determine the land cover changes with high accuracy. This study describes a methodology to detect burned areas and analyse the Land Cover and Land Use (LCLU) classes present in these areas during the period of 5 years (2016–2021) by Sentinel-2 images. The training areas were obtained by photointerpretation and the image classification was performed using the Random Forest algorithm which shows an overall accuracy range between 80–85%. The methodology concluded that Lobios and Muiños were the most affected municipalities by wildfires. Additionally, the spatial analysis determined that the Deciduous Forest mainly composed by Quercus sp. were the most affected in 2017 followed by Coniferous Forest mainly composed by Pinus sp.in 2016. Although, Scrub and Rock are the classes more affected for wildfire during 2016–2020 period.en
dc.description.sponsorshipUniversidade de Vigospa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PCI2020-120705-2spa
dc.description.sponsorshipXunta de Galicia | Ref. ED481B-2019-061spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2020/01spa
dc.language.isoengspa
dc.publisherISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciencesspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PCI2020-120705-2/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleSpatial analysis of tree species before forest firesen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.5194/isprs-archives-XLIII-B3-2022-959-2022
dc.identifier.editorhttps://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/959/2022/spa
dc.publisher.departamentoEnxeñaría dos recursos naturais e medio ambientespa
dc.publisher.departamentoEnxeñaría de sistemas e automáticaspa
dc.publisher.grupoinvestigacionXeotecnoloxías Aplicadasspa
dc.publisher.grupoinvestigacionGrupo de Ingeniería Físicaspa
dc.subject.unesco3311.02 Ingeniería de Controlspa
dc.subject.unesco2505.02 Cartografía Geográficaspa
dc.subject.unesco3106 Ciencia Forestalspa
dc.subject.unesco3106.10 Incendios forestalesspa
dc.date.updated2023-03-09T12:33:20Z
dc.computerCitationpub_title=ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences|volume=XLIII-B3-2022|journal_number=|start_pag=959|end_pag=966spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International