Show simple item record

dc.contributor.authorContreras Castillo, Juan
dc.contributor.authorGuerrero Ibañez, Juan Antonio
dc.contributor.authorSantana Mancilla, Pedro C.
dc.contributor.authorAnido Rifón, Luis Eulogio 
dc.date.accessioned2023-02-15T13:39:08Z
dc.date.available2023-02-15T13:39:08Z
dc.date.issued2023-02-02
dc.identifier.citationApplied Sciences, 13(3): 1961 (2023)spa
dc.identifier.issn20763417
dc.identifier.urihttp://hdl.handle.net/11093/4487
dc.description.abstractThe Internet of Things (IoT) and convolutional neural networks (CNN) integration is a growing topic of interest for researchers as a technology that will contribute to transforming agriculture. IoT will enable farmers to decide and act based on data collected from sensor nodes regarding field conditions and not purely based on experience, thus minimizing the wastage of supplies (seeds, water, pesticide, and fumigants). On the other hand, CNN complements monitoring systems with tasks such as the early detection of crop diseases or predicting the number of consumable resources and supplies (water, fertilizers) needed to increase productivity. This paper proposes SAgric-IoT, a technology platform based on IoT and CNN for precision agriculture, to monitor environmental and physical variables and provide early disease detection while automatically controlling the irrigation and fertilization in greenhouses. The results show SAgric-IoT is a reliable IoT platform with a low packet loss level that considerably reduces energy consumption and has a disease identification detection accuracy and classification process of over 90%.en
dc.language.isoengspa
dc.publisherApplied Sciencesspa
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleSAgric-IoT: an IoT-based platform and deep learning for greenhouse monitoringen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/app13031961
dc.identifier.editorhttps://www.mdpi.com/2076-3417/13/3/1961spa
dc.publisher.departamentoEnxeñaría telemáticaspa
dc.publisher.grupoinvestigacionGIST (Grupo de Enxeñería de Sistemas Telemáticos)spa
dc.subject.unesco1203.04 Inteligencia Artificialspa
dc.subject.unesco3103 Agronomíaspa
dc.subject.unesco3103.04 Protección de Los Cultivosspa
dc.date.updated2023-02-15T13:35:45Z
dc.computerCitationpub_title=Applied Sciences|volume=13|journal_number=3|start_pag=1961|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International