Show simple item record

dc.contributor.authorMohamed, Essraa Gamal
dc.contributor.authorDíaz Redondo, Rebeca Pilar 
dc.contributor.authorKoura, Abdelrahim
dc.contributor.authorEL-Mofty, Mohamed Sherif
dc.contributor.authorKayed, Mohammed
dc.date.accessioned2023-02-15T08:32:29Z
dc.date.available2023-02-15T08:32:29Z
dc.date.issued2023-01-29
dc.identifier.citationComputation, 11(2): 18 (2023)spa
dc.identifier.issn20793197
dc.identifier.urihttp://hdl.handle.net/11093/4474
dc.description.abstractThe significance of age estimation arises from its applications in various fields, such as forensics, criminal investigation, and illegal immigration. Due to the increased importance of age estimation, this area of study requires more investigation and development. Several methods for age estimation using biometrics traits, such as the face, teeth, bones, and voice. Among then, teeth are quite convenient since they are resistant and durable and are subject to several changes from childhood to birth that can be used to derive age. In this paper, we summarize the common biometrics traits for age estimation and how this information has been used in previous research studies for age estimation. We have paid special attention to traditional machine learning methods and deep learning approaches used for dental age estimation. Thus, we summarized the advances in convolutional neural network (CNN) models to estimate dental age from radiological images, such as 3D cone-beam computed tomography (CBCT), X-ray, and orthopantomography (OPG) to estimate dental age. Finally, we also point out the main innovations that would potentially increase the performance of age estimation systems.en
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2020-113795RB-C33spa
dc.language.isoengspa
dc.publisherComputationspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113795RB-C33/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleDental age estimation using deep learning: a comparative surveyen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/computation11020018
dc.identifier.editorhttps://www.mdpi.com/2079-3197/11/2/18spa
dc.subject.unesco3314 Tecnología Médicaspa
dc.subject.unesco1209.03 Análisis de Datosspa
dc.subject.unesco1203.04 Inteligencia Artificial
dc.date.updated2023-02-15T08:28:56Z
dc.computerCitationpub_title=Computation|volume=11|journal_number=2|start_pag=18|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International