Show simple item record

dc.contributor.authorGonzalez Cabaleiro, Laura 
dc.contributor.authorLongo González, María Asunción 
dc.contributor.authorÁlvarez Álvarez, María Salomé 
dc.contributor.authorRodríguez Rodríguez, Ana María 
dc.contributor.authorDeive Herva, Francisco Javier 
dc.date.accessioned2022-11-23T13:33:11Z
dc.date.available2022-11-23T13:33:11Z
dc.date.issued2022-11
dc.identifier.citationJournal of Molecular Liquids, 366, 120214 (2022)spa
dc.identifier.issn01677322
dc.identifier.urihttp://hdl.handle.net/11093/4130
dc.descriptionFinanciado para publicación en acceso aberto:Universidade de Vigo/CISUG
dc.description.abstractIn this work, biocompatible ionic liquids based on aminoacids were employed as extractants to separate extremolipases from aqueous streams. First, the influence of aminoacid and dipeptide-based ionic liquids (cholinium glycinate, ChGly, and cholinium glycylglycinate, ChGlygly) on the lipolytic activity of a commercial lipase from Candida antarctica (CaLB) and in-house synthesized extremophilic lipases from Thermus thermophilus HB27 (TtHB27L) and Halomonas sp. LM1C (HL) was investigated. The combination of thermophilic enzyme with ChGly turned out to be the optimum combination for maximizing the biocatalytic performance, clearly improving the levels attained when water was exclusively employed as solvent and also surpassing the activity levels provided for the commercial enzyme CaLB. The salting out capacity of ChGly in aqueous solutions of biodegradable surfactants Tergitol 15S7 and Tergitol 15S9 was discussed, recording immiscibility areas almost covering all the ternary diagrams. The aqueous biphasic systems were experimentally characterized by determining both tie-lines and solubility curves at several temperatures and the data was modelled with relevant equations like Merchuk, Othmer-Tobias and Bancroft ones, as they are the most common ones to describe this kind of equilibrium data. So, ChGly was applied to extract thermophilic and commercial lipases from aqueous solutions at 313.15 K, achieving very high extraction levels (about 100 %) for TtHB27L, which clearly surpasses the maximum extraction values observed for the commercial enzyme (about 80 %). Finally, the process was simulated at real scale through SuperPro Designer v.8.5 for the production of 385 Kg/year of extremolipaseen
dc.description.sponsorshipXunta de Galicia | Ref. ED481D-2019/017spa
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades | Ref. RTI2018-094702-B-I00spa
dc.language.isoengspa
dc.publisherJournal of Molecular Liquidsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094702-B-I00/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleExtracting extremophilic lipases from aqueous streams by using biocompatible ionic liquidsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.molliq.2022.120214
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S0167732222017536spa
dc.publisher.departamentoEnxeñaría químicaspa
dc.publisher.grupoinvestigacionEnxeñería Química 3spa
dc.publisher.grupoinvestigacionProcesos de Separaciónspa
dc.subject.unesco3310.05 Ingeniería de Procesosspa
dc.subject.unesco3303 Ingeniería y Tecnología Químicasspa
dc.date.updated2022-11-16T14:13:33Z
dc.computerCitationpub_title=Journal of Molecular Liquids|volume=366|journal_number=|start_pag=120214|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International