dc.contributor.author | Díaz Redondo, Rebeca Pilar | |
dc.contributor.author | García Rubio, Carlos | |
dc.contributor.author | Fernández Vilas, Ana | |
dc.contributor.author | Campo Vázquez, María Celeste | |
dc.contributor.author | Rodríguez Carrión, Alicia | |
dc.date.accessioned | 2022-09-28T10:00:01Z | |
dc.date.available | 2022-09-28T10:00:01Z | |
dc.date.issued | 2020-08 | |
dc.identifier.citation | Future Generation Computer Systems, 109, 83-94 (2020) | spa |
dc.identifier.issn | 0167739X | |
dc.identifier.uri | http://hdl.handle.net/11093/3894 | |
dc.description.abstract | Undoubtedly, Location-based Social Networks (LBSNs) provide an interesting source of geo-located data that we have previously used to obtain patterns of the dynamics of crowds throughout urban areas. According to our previous results, activity in LBSNs reflects the real activity in the city. Therefore, unexpected behaviors in the social media activity are a trustful evidence of unexpected changes of the activity in the city. In this paper we introduce a hybrid solution to early detect these changes based on applying a combination of two approaches, the use of entropy analysis and clustering techniques, on the data gathered from LBSNs. In particular, we have performed our experiments over a data set collected from Instagram for seven months in New York City, obtaining promising results. | spa |
dc.description.sponsorship | Ministerio de Economía y Competitividad | Ref. TEC2014-54335-C4-2-R | spa |
dc.description.sponsorship | Ministerio de Economía y Competitividad | Ref. TEC2014-54335-C4-3-R | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. TEC2017-84197-C4-2-R | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. TEC2017-84197-C4-3-R | spa |
dc.language.iso | eng | spa |
dc.publisher | Future Generation Computer Systems | spa |
dc.relation | info:eu-repo/grantAgreement/MINECO//TEC2014-54335-C4-2-R/ES/MONITORIZACION DE INCIDENTES EN COMUNIDADES INTELIGENTES (INRISCO): SEGURIDAD Y MOVILIDAD | |
dc.relation | info:eu-repo/grantAgreement/MINECO//TEC2014-54335-C4-3-R/ES/INRISCO: ANALISIS DE COMUNIDADES BASADO EN MINERIA SOCIAL | |
dc.relation | info:eu-repo/grantAgreement/AEI//TEC2017-84197-C4-2-R/ES/MAGOS: DETECCION DE IRREGULARIDADES EN FUENTES DE DATOS Y PROCESOS DISTRIBUIDOS | |
dc.relation | info:eu-repo/grantAgreement/AEI//TEC2017-84197-C4-3-R/ES/INTELIGENCIA DE FUENTES ABIERTAS PARA REDES ELECTRICAS INTELIGENTES SEGURAS. PRIVACIDAD DE DATOS Y COMUNICACIONES FIABLES | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | A hybrid analysis of LBSN data to early detect anomalies in crowd dynamics | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1016/j.future.2020.03.038 | |
dc.identifier.editor | https://linkinghub.elsevier.com/retrieve/pii/S0167739X19309859 | spa |
dc.publisher.departamento | Enxeñaría telemática | spa |
dc.publisher.grupoinvestigacion | Information and Computing Laboratory | spa |
dc.subject.unesco | 1203.99 Otras | spa |
dc.subject.unesco | 1209.03 Análisis de Datos | spa |
dc.date.updated | 2022-09-28T08:39:13Z | |
dc.computerCitation | pub_title=Future Generation Computer Systems|volume=109|journal_number=|start_pag=83|end_pag=94 | spa |