In silico and functional analyses of immunomodulatory peptides encrypted in the human gut metaproteome
DATE:
2020-07
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/3893
EDITED VERSION: https://linkinghub.elsevier.com/retrieve/pii/S1756464620301936
DOCUMENT TYPE: article
ABSTRACT
This work supports the massive presence of potential immunomodulatory peptides in the human gut metaproteome. These peptides were identified through the MAHMI database as potentially anti-inflammatory, and sixteen of them synthesized for characterize their mechanism of action. From them, peptide HM14 was encrypted in an extracellular protein produced by Bifidobacterium longum, a common member of the human microbiota, and displayed the highest anti-inflammatory capability. Molecular mechanism of action of HM14 pointed to a specific interaction between this immunomodulatory peptide and antigen presenting cells, which resulted in a higher formation of iTreg cells. Moreover, HM14 was effective in decreasing pro-inflammatory parameters in PBMCs isolated from a cohort of Crohn's patients. Finally, non-targeted metabolomics confirmed the ability of HM14 to modulate the metabolic activity of PBMCs to fulfil its energy and biosynthetic requirements. Overall, our combined in silico/multiomics approach supports the human gut metaproteome as a source for immunomodulatory peptides.