dc.contributor.author | Bazarra Garcia, Noelia | |
dc.contributor.author | Colturato, Michele | |
dc.contributor.author | Fernández García, José Ramón | |
dc.contributor.author | Naso, Maria Grazia | |
dc.contributor.author | Simonetto, Anna | |
dc.contributor.author | Gilioli, Gianni | |
dc.date.accessioned | 2022-09-15T09:41:46Z | |
dc.date.available | 2022-09-15T09:41:46Z | |
dc.date.issued | 2022-04-19 | |
dc.identifier.citation | Applied Mathematics & Optimization, 85(19): (2022) | spa |
dc.identifier.issn | 00954616 | |
dc.identifier.issn | 14320606 | |
dc.identifier.uri | http://hdl.handle.net/11093/3831 | |
dc.description | Financiado para publicación en acceso aberto: Universidade de Vigo/CISUG | |
dc.description.abstract | In this work we study from the mathematical and numerical point of view a problem arising in vector-borne plant diseases. The model is written as a nonlinear system composed of a parabolic partial differential equation for the vector abundance function and a first-order ordinary differential equation for the plant health function. An existence and uniqueness result is proved using backward finite differences, uniform estimates and passing to the limit. The regularity of the solution is also obtained. Then, using the finite element method and the implicit Euler scheme, fully discrete approximations are introduced. A discrete stability property and a main a priori error estimates result are proved using a discrete version of Gronwall’s lemma and some estimates on the different approaches. Finally, some numerical results, in one and two dimensions, are presented to demonstrate the accuracy of the approximation and the behaviour of the solution. | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. PGC2018-096696-B-I00 | spa |
dc.language.iso | eng | spa |
dc.publisher | Applied Mathematics & Optimization | spa |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096696-B-I00/ES/ANALISIS MATEMATICO Y SIMULACION NUMERICA DE PROBLEMAS CON REMODELACION OSEA. APLICACIONES EN EL DISEÑO DE IMPLANTES DENTALES Y PROTESIS | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Analysis of a mathematical model arising in plant disease epidemiology | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1007/s00245-022-09858-z | |
dc.identifier.editor | https://link.springer.com/10.1007/s00245-022-09858-z | spa |
dc.publisher.departamento | Matemática aplicada I | spa |
dc.publisher.grupoinvestigacion | Deseño e Simulación Numérica en Enxeñaría Mecánica | spa |
dc.subject.unesco | 12 Matemáticas | spa |
dc.subject.unesco | 1206 Análisis Numérico | spa |
dc.subject.unesco | 1299 Otras Especialidades Matemáticas | spa |
dc.date.updated | 2022-09-15T08:31:25Z | |
dc.computerCitation | pub_title=Applied Mathematics & Optimization|volume=85|journal_number=19|start_pag=|end_pag= | spa |