dc.contributor.author | Ribadas Pena, Francisco Jose | |
dc.contributor.author | Cao, Shuyuan | |
dc.contributor.author | Darriba Bilbao, Victor Manuel | |
dc.date.accessioned | 2022-09-05T10:54:14Z | |
dc.date.available | 2022-09-05T10:54:14Z | |
dc.date.issued | 2022-08-11 | |
dc.identifier.citation | Mathematics, 10(16): 2867 (2022) | spa |
dc.identifier.issn | 22277390 | |
dc.identifier.uri | http://hdl.handle.net/11093/3804 | |
dc.description.abstract | In this paper, we introduce a multi-label lazy learning approach to deal with automatic semantic indexing in large document collections in the presence of complex and structured label vocabularies with high inter-label correlation. The proposed method is an evolution of the traditional k-Nearest Neighbors algorithm which uses a large autoencoder trained to map the large label space to a reduced size latent space and to regenerate the predicted labels from this latent space. We have evaluated our proposal in a large portion of the MEDLINE biomedical document collection which uses the Medical Subject Headings (MeSH) thesaurus as a controlled vocabulary. In our experiments we propose and evaluate several document representation approaches and different label autoencoder configurations. | en |
dc.description.sponsorship | Ministerio de Ciencia e Innovación | Ref. PID2020-113230RB-C22 | spa |
dc.language.iso | eng | spa |
dc.publisher | Mathematics | spa |
dc.relation | info:eu-repo/grantAgreement/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113230RB-C22/ES/SEQUENCE LABELING MULTITASK MODELS FOR LINGUISTICALLY ENRICHED NER: SEMANTICS AND DOMAIN ADAPTATION (SCANNER-UVIGO) | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Improving large-scale k-nearest neighbor text categorization with label autoencoders | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.3390/math10162867 | |
dc.identifier.editor | https://www.mdpi.com/2227-7390/10/16/2867 | spa |
dc.publisher.departamento | Informática | spa |
dc.publisher.grupoinvestigacion | COmputational LEarnig | spa |
dc.subject.unesco | 1203.17 Informática | spa |
dc.subject.unesco | 12 Matemáticas | spa |
dc.subject.unesco | 3304 Tecnología de Los Ordenadores | spa |
dc.date.updated | 2022-09-05T10:19:31Z | |
dc.computerCitation | pub_title=Mathematics|volume=10|journal_number=16|start_pag=2867|end_pag= | spa |