Show simple item record

dc.contributor.authorRibadas Pena, Francisco Jose 
dc.contributor.authorCao, Shuyuan
dc.contributor.authorDarriba Bilbao, Victor Manuel 
dc.date.accessioned2022-09-05T10:54:14Z
dc.date.available2022-09-05T10:54:14Z
dc.date.issued2022-08-11
dc.identifier.citationMathematics, 10(16): 2867 (2022)spa
dc.identifier.issn22277390
dc.identifier.urihttp://hdl.handle.net/11093/3804
dc.description.abstractIn this paper, we introduce a multi-label lazy learning approach to deal with automatic semantic indexing in large document collections in the presence of complex and structured label vocabularies with high inter-label correlation. The proposed method is an evolution of the traditional k-Nearest Neighbors algorithm which uses a large autoencoder trained to map the large label space to a reduced size latent space and to regenerate the predicted labels from this latent space. We have evaluated our proposal in a large portion of the MEDLINE biomedical document collection which uses the Medical Subject Headings (MeSH) thesaurus as a controlled vocabulary. In our experiments we propose and evaluate several document representation approaches and different label autoencoder configurations.en
dc.description.sponsorshipMinisterio de Ciencia e Innovación | Ref. PID2020-113230RB-C22spa
dc.language.isoengspa
dc.publisherMathematicsspa
dc.relationinfo:eu-repo/grantAgreement/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113230RB-C22/ES/SEQUENCE LABELING MULTITASK MODELS FOR LINGUISTICALLY ENRICHED NER: SEMANTICS AND DOMAIN ADAPTATION (SCANNER-UVIGO)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleImproving large-scale k-nearest neighbor text categorization with label autoencodersen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/math10162867
dc.identifier.editorhttps://www.mdpi.com/2227-7390/10/16/2867spa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionCOmputational LEarnigspa
dc.subject.unesco1203.17 Informáticaspa
dc.subject.unesco12 Matemáticasspa
dc.subject.unesco3304 Tecnología de Los Ordenadoresspa
dc.date.updated2022-09-05T10:19:31Z
dc.computerCitationpub_title=Mathematics|volume=10|journal_number=16|start_pag=2867|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International