Show simple item record

dc.contributor.authorMabrouk, Alhassan
dc.contributor.authorDíaz Redondo, Rebeca Pilar 
dc.contributor.authorKayed, Mohammed
dc.date.accessioned2022-07-01T11:10:11Z
dc.date.available2022-07-01T11:10:11Z
dc.date.issued2020-05
dc.identifier.citationIEEE Access, 8, 85616-85638 (2020)spa
dc.identifier.issn21693536
dc.identifier.urihttp://hdl.handle.net/11093/3650
dc.description.abstractRecently, Deep Learning (DL) approaches have been applied to solve the Sentiment Classification (SC) problem, which is a core task in reviews mining or Sentiment Analysis (SA). The performances of these approaches are affected by different factors. This paper addresses these factors and classifies them into three categories: data preparation based factors, feature representation based factors and the classification techniques based factors. The paper is a comprehensive literature-based survey that compares the performance of more than 100 DL-based SC approaches by using 21 public datasets of reviews given by customers within three specific application domains (products, movies and restaurants). These 21 datasets have different characteristics (balanced/imbalanced, size, etc.) to give a global vision for our study. The comparison explains how the proposed factors quantitatively affect the performance of the studied DL-based SC approaches.spa
dc.description.sponsorshipXunta de Galiciaspa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. TEC2017-84197-C4-2-Rspa
dc.language.isoengspa
dc.publisherIEEE Accessspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84197-C4-2-R/ES/MAGOS: DETECCION DE IRREGULARIDADES EN FUENTES DE DATOS Y PROCESOS DISTRIBUIDOS
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleDeep learning-based sentiment classification: a comparative surveyen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1109/ACCESS.2020.2992013
dc.identifier.editorhttps://ieeexplore.ieee.org/document/9085334/spa
dc.publisher.departamentoEnxeñaría telemáticaspa
dc.publisher.grupoinvestigacionInformation and Computing Laboratoryspa
dc.subject.unesco3325 Tecnología de las Telecomunicacionesspa
dc.subject.unesco3325.99 Otrasspa
dc.date.updated2022-07-01T08:15:04Z
dc.computerCitationpub_title=IEEE Access|volume=8|journal_number=|start_pag=85616|end_pag=85638spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International