dc.contributor.author | Mabrouk, Alhassan | |
dc.contributor.author | Díaz Redondo, Rebeca Pilar | |
dc.contributor.author | Kayed, Mohammed | |
dc.date.accessioned | 2022-07-01T11:10:11Z | |
dc.date.available | 2022-07-01T11:10:11Z | |
dc.date.issued | 2020-05 | |
dc.identifier.citation | IEEE Access, 8, 85616-85638 (2020) | spa |
dc.identifier.issn | 21693536 | |
dc.identifier.uri | http://hdl.handle.net/11093/3650 | |
dc.description.abstract | Recently, Deep Learning (DL) approaches have been applied to solve the Sentiment Classification (SC) problem, which is a core task in reviews mining or Sentiment Analysis (SA). The performances of these approaches are affected by different factors. This paper addresses these factors and classifies them into three categories: data preparation based factors, feature representation based factors and the classification techniques based factors. The paper is a comprehensive literature-based survey that compares the performance of more than 100 DL-based SC approaches by using 21 public datasets of reviews given by customers within three specific application domains (products, movies and restaurants). These 21 datasets have different characteristics (balanced/imbalanced, size, etc.) to give a global vision for our study. The comparison explains how the proposed factors quantitatively affect the performance of the studied DL-based SC approaches. | spa |
dc.description.sponsorship | Xunta de Galicia | spa |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. TEC2017-84197-C4-2-R | spa |
dc.language.iso | eng | spa |
dc.publisher | IEEE Access | spa |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84197-C4-2-R/ES/MAGOS: DETECCION DE IRREGULARIDADES EN FUENTES DE DATOS Y PROCESOS DISTRIBUIDOS | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Deep learning-based sentiment classification: a comparative survey | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1109/ACCESS.2020.2992013 | |
dc.identifier.editor | https://ieeexplore.ieee.org/document/9085334/ | spa |
dc.publisher.departamento | Enxeñaría telemática | spa |
dc.publisher.grupoinvestigacion | Information and Computing Laboratory | spa |
dc.subject.unesco | 3325 Tecnología de las Telecomunicaciones | spa |
dc.subject.unesco | 3325.99 Otras | spa |
dc.date.updated | 2022-07-01T08:15:04Z | |
dc.computerCitation | pub_title=IEEE Access|volume=8|journal_number=|start_pag=85616|end_pag=85638 | spa |