Show simple item record

dc.contributor.authorNogueira Rodríguez, Alba 
dc.contributor.authorReboiro Jato, Miguel 
dc.contributor.authorGonzález Peña, Daniel 
dc.contributor.authorLópez Fernández, Hugo 
dc.date.accessioned2022-06-07T11:27:44Z
dc.date.available2022-06-07T11:27:44Z
dc.date.issued2022-04-04
dc.identifier.citationDiagnostics, 12(4): 898 (2022)spa
dc.identifier.issn20754418
dc.identifier.urihttp://hdl.handle.net/11093/3541
dc.description.abstractColorectal cancer is one of the most frequent malignancies. Colonoscopy is the de facto standard for precancerous lesion detection in the colon, i.e., polyps, during screening studies or after facultative recommendation. In recent years, artificial intelligence, and especially deep learning techniques such as convolutional neural networks, have been applied to polyp detection and localization in order to develop real-time CADe systems. However, the performance of machine learning models is very sensitive to changes in the nature of the testing instances, especially when trying to reproduce results for totally different datasets to those used for model development, i.e., inter-dataset testing. Here, we report the results of testing of our previously published polyp detection model using ten public colonoscopy image datasets and analyze them in the context of the results of other 20 state-of-the-art publications using the same datasets. The F1-score of our recently published model was 0.88 when evaluated on a private test partition, i.e., intra-dataset testing, but it decayed, on average, by 13.65% when tested on ten public datasets. In the published research, the average intra-dataset F1-score is 0.91, and we observed that it also decays in the inter-dataset setting to an average F1-score of 0.83.en
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. DPI2017-87494-Rspa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PDC2021-121644-I00spa
dc.description.sponsorshipXunta de Galicia | Ref. ED481A-2019/299spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C2018/55-GRCspa
dc.description.sponsorshipFundação para a Ciência e a Tecnologia | Ref. 2020.00515.CEECINDspa
dc.language.isoengspa
dc.publisherDiagnosticsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87494-R/ES/POLYDEEP: SISTEMA INTELIGENTE DE DETECCION Y CLASIFICACION EN TIEMPO REAL DE LESIONES COLORRECTALES MEDIANTE DEEP LEARNING
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121644-I00/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titlePerformance of convolutional neural networks for polyp localization on public colonoscopy image datasetsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/diagnostics12040898
dc.identifier.editorhttps://www.mdpi.com/2075-4418/12/4/898spa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionSistemas Informáticos de Nova Xeraciónspa
dc.subject.unesco1203.04 Inteligencia Artificialspa
dc.subject.unesco1203.20 Sistemas de Control Medicospa
dc.subject.unesco3207.03 Carcinogénesisspa
dc.date.updated2022-06-07T11:24:11Z
dc.computerCitationpub_title=Diagnostics|volume=12|journal_number=4|start_pag=898|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International