dc.contributor.author | Martínez Comesaña, Miguel | |
dc.contributor.author | Eguía Oller, Pablo | |
dc.contributor.author | Martínez Torres, Javier | |
dc.contributor.author | Febrero Garrido, Lara | |
dc.contributor.author | Granada Álvarez, Enrique | |
dc.date.accessioned | 2022-02-18T15:47:25Z | |
dc.date.available | 2022-02-18T15:47:25Z | |
dc.date.issued | 2022-05 | |
dc.identifier.citation | Sustainable Cities and Society, 80: 103723 (2022) | spa |
dc.identifier.issn | 22106707 | |
dc.identifier.uri | http://hdl.handle.net/11093/3094 | |
dc.description | Financiado para publicación en acceso aberto: Universidade de Vigo/CISUG | |
dc.description.abstract | Indoor environmental quality (IEQ) monitoring of in-use buildings has become essential in recent years due to the COVID-19 pandemic, as it significantly affects the well-being, health and productivity of building users. Nevertheless, knowing in real time the environmental conditions in large multi-zone areas is a difficult issue. Thus, the use of machine learning techniques to estimate indoor conditions has increased considerably. The aim of this paper is to present an interpolation model, based on an optimised extreme gradient boosting algorithm, to estimate every minute the indoor temperature, relative humidity and CO concentration inside buildings. These estimations are obtained without requiring permanent monitoring in the occupied zone. The optimisation, focused on finding the minimum number of monitoring devices needed to provide accurate interpolations, is performed using the multi-objective genetic algorithm NSGA-III. This methodology was applied in a research centre in the north-western Spain. The results show that the optimised or reduced model is capable of estimating indoor temperatures and relative humidity with relative errors below 6% and CO2 levels below 10%. | en |
dc.description.sponsorship | Agencia Estatal de Investigación | Ref. RTI2018-096296-B-C2 | spa |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades | Ref. FPU19/01187 | spa |
dc.language.iso | eng | en |
dc.publisher | Sustainable Cities and Society | spa |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan de actuaciónPlan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096296-B-C21/ES/INVESTIGACION PARA EL DESARROLLO DE HERRAMIENTAS DE CARACTERIZACION Y PREDICCION DEL RENDIMIENTO ENERGETICO DE EDIFICIOS | |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan de actuaciónPlan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096296-B-C22/ES/INVESTIGACION DE TECNICAS DE MONITORIZACION DE EDIFICIOS OCUPADOS PARA SU CARACTERIZACION TERMICA Y DE LA METODOLOGIA PARA IDENTIFICAR SUS INDICADORES CLAVE DE RENDIMIENTO | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Optimisation of thermal comfort and indoor air quality estimations applied to in-use buildings combining NSGA-III and XGBoost | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1016/j.scs.2022.103723 | |
dc.identifier.editor | https://linkinghub.elsevier.com/retrieve/pii/S2210670722000531 | spa |
dc.publisher.departamento | Enxeñaría mecánica, máquinas e motores térmicos e fluídos | spa |
dc.publisher.departamento | Matemática aplicada I | spa |
dc.publisher.grupoinvestigacion | GTE (Grupo de Tecnoloxía Enerxética) | spa |
dc.publisher.grupoinvestigacion | Xestión Segura e Sostible de Recursos Minerais | spa |
dc.subject.unesco | 1299 Otras Especialidades Matemáticas | spa |
dc.date.updated | 2022-02-14T11:50:54Z | |
dc.computerCitation | pub_title=Sustainable Cities and Society|volume=80|journal_number=|start_pag=103723|end_pag= | spa |