Show simple item record

dc.contributor.authorMartínez Comesaña, Miguel 
dc.contributor.authorEguía Oller, Pablo 
dc.contributor.authorMartínez Torres, Javier 
dc.contributor.authorFebrero Garrido, Lara 
dc.contributor.authorGranada Álvarez, Enrique 
dc.date.accessioned2022-02-18T15:47:25Z
dc.date.available2022-02-18T15:47:25Z
dc.date.issued2022-05
dc.identifier.citationSustainable Cities and Society, 80: 103723 (2022)spa
dc.identifier.issn22106707
dc.identifier.urihttp://hdl.handle.net/11093/3094
dc.descriptionFinanciado para publicación en acceso aberto: Universidade de Vigo/CISUG
dc.description.abstractIndoor environmental quality (IEQ) monitoring of in-use buildings has become essential in recent years due to the COVID-19 pandemic, as it significantly affects the well-being, health and productivity of building users. Nevertheless, knowing in real time the environmental conditions in large multi-zone areas is a difficult issue. Thus, the use of machine learning techniques to estimate indoor conditions has increased considerably. The aim of this paper is to present an interpolation model, based on an optimised extreme gradient boosting algorithm, to estimate every minute the indoor temperature, relative humidity and CO concentration inside buildings. These estimations are obtained without requiring permanent monitoring in the occupied zone. The optimisation, focused on finding the minimum number of monitoring devices needed to provide accurate interpolations, is performed using the multi-objective genetic algorithm NSGA-III. This methodology was applied in a research centre in the north-western Spain. The results show that the optimised or reduced model is capable of estimating indoor temperatures and relative humidity with relative errors below 6% and CO2 levels below 10%.en
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. RTI2018-096296-B-C2spa
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades | Ref. FPU19/01187spa
dc.language.isoengen
dc.publisherSustainable Cities and Societyspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan de actuaciónPlan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096296-B-C21/ES/INVESTIGACION PARA EL DESARROLLO DE HERRAMIENTAS DE CARACTERIZACION Y PREDICCION DEL RENDIMIENTO ENERGETICO DE EDIFICIOS
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan de actuaciónPlan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096296-B-C22/ES/INVESTIGACION DE TECNICAS DE MONITORIZACION DE EDIFICIOS OCUPADOS PARA SU CARACTERIZACION TERMICA Y DE LA METODOLOGIA PARA IDENTIFICAR SUS INDICADORES CLAVE DE RENDIMIENTO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleOptimisation of thermal comfort and indoor air quality estimations applied to in-use buildings combining NSGA-III and XGBoosten
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.scs.2022.103723
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S2210670722000531spa
dc.publisher.departamentoEnxeñaría mecánica, máquinas e motores térmicos e fluídosspa
dc.publisher.departamentoMatemática aplicada Ispa
dc.publisher.grupoinvestigacionGTE (Grupo de Tecnoloxía Enerxética)spa
dc.publisher.grupoinvestigacionXestión Segura e Sostible de Recursos Mineraisspa
dc.subject.unesco1299 Otras Especialidades Matemáticasspa
dc.date.updated2022-02-14T11:50:54Z
dc.computerCitationpub_title=Sustainable Cities and Society|volume=80|journal_number=|start_pag=103723|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution-NonCommercial-NoDerivatives 4.0 International
    Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International