Show simple item record

dc.contributor.authorCousido Rocha, Marta 
dc.contributor.authorDe Uña Alvarez, Jacobo 
dc.contributor.authorDöhler, Sebastian
dc.date.accessioned2022-01-12T11:21:21Z
dc.date.available2022-01-12T11:21:21Z
dc.date.issued2022-01
dc.identifier.citationJournal of the Royal Statistical Society Series C (Applied Statistics), 71(1): 219-243 (2022)spa
dc.identifier.issn00359254
dc.identifier.issn14679876
dc.identifier.urihttp://hdl.handle.net/11093/2969
dc.descriptionFinanciado para publicación en acceso aberto: Universidade de Vigo/CISUG
dc.description.abstractDiscrete uniform and homogeneous p-values often arise in applications with multiple testing. For example, this occurs in genome wide association studies whenever a non-parametric one-sample (or two-sample) test is applied throughout the gene loci. In this paper, we consider multiple comparison procedures for such scenarios based on several existing estimators for the proportion of true null hypotheses, p0, which take the discreteness of the p-values into account. The theoretical guarantees of the several approaches with respect to the estimation of p0 and the false discovery rate control are reviewed. The performance of the discrete procedures is investigated through intensive Monte Carlo simulations considering both independent and dependent p-values. The methods are applied to three real data sets for illustration purposes too. Since the particular estimator of p0 used to compute the q-values may influence its performance, relative advantages and disadvantages of the reviewed procedures are discussed. Practical recommendations are given.spa
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. BES-2015-074958spa
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. MTM2014-55966-Pspa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. MTM2017-89422-Pspa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C 2016/040spa
dc.language.isoengen
dc.publisherJournal of the Royal Statistical Society Series C (Applied Statistics)spa
dc.relationinfo:eu-repo/grantAgreement/MINECO//BES-2015-074958/ES/
dc.relationinfo:eu-repo/grantAgreement/MINECO//MTM2014-55966-P/ES/AVANCES METODOLOGICOS Y COMPUTATIONALES EN ESTADISTICA NO-PARAMETRICA Y SEMIPARAMETRICA
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89422-P/ES/NUEVOS AVANCES METODOLOGICOS Y COMPUTATIONALES EN ESTADISTICA NO PARAMETRICA Y SEMIPARAMETRICA
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleMultiple comparison procedures for discrete uniform and homogeneous testsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1111/rssc.12529
dc.identifier.editorhttps://onlinelibrary.wiley.com/doi/10.1111/rssc.12529spa
dc.publisher.departamentoEstatística e investigación operativaspa
dc.publisher.grupoinvestigacionInferencia Estatística, Decisión e Investigación Operativaspa
dc.subject.unesco1209 Estadísticaspa
dc.subject.unesco12 Matemáticasspa
dc.subject.unesco1209.99 Otrasspa
dc.date.updated2021-12-14T08:49:15Z
dc.computerCitationpub_title=Journal of the Royal Statistical Society Series C (Applied Statistics)|volume=71|journal_number=1|start_pag=219|end_pag=243spa


Files in this item

[PDF]

    Show simple item record

    Attribution-NonCommercial-NoDerivatives 4.0 International
    Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International