dc.contributor.author | Arenas Lago, Daniel | |
dc.contributor.author | Carvalho, Luisa C. | |
dc.contributor.author | Santos, Erika S. | |
dc.contributor.author | Abreu, Maria Manuela | |
dc.date.accessioned | 2022-01-10T12:58:56Z | |
dc.date.available | 2022-01-10T12:58:56Z | |
dc.date.issued | 2021-12-30 | |
dc.identifier.citation | Plants, 11(1): 105 (2021) | spa |
dc.identifier.issn | 22237747 | |
dc.identifier.uri | http://hdl.handle.net/11093/2953 | |
dc.description.abstract | Mining activities have turned many areas of the Iberian Pyrite Belt (IPB) into extreme environments with high concentrations of metal(loid)s. These harsh conditions can inhibit or reduce the colonization and/or development of most vegetation. However, some species or populations have developed ecophysiological responses to tolerate stress factors and contaminated soils. The main objectives of this study are: (i) to assess the differences in germination, growth, development and physiological behaviour against oxidative stress caused by metal(loid)s in Lavandula pedunculata (Mill.) Cav. from two different origins (a contaminated area in São Domingos mine, SE of Portugal and an uncontaminated area from Serra do Caldeirão, S of Portugal) under controlled conditions; and (ii) to assess whether it is possible to use this species for the rehabilitation of mine areas of the IPB. After germination, seedlings from São Domingos (LC) and Caldeirão (L) were planted in pots with a contaminated soil developed on gossan (CS) and in pots with an uncontaminated soil (US) under controlled conditions. Multielemental concentrations were determined in soils (total and available fractions) and plants (shoots and roots). Germination rate, shoot height, dry biomass and leaf area were determined, and pigments, glutathione, ascorbate and H2O2 contents were measured in plant shoots. Total concentrations of As, Cr, Cu, Pb and Sb in CS, and As in US exceed the intervention and maximum limits for ecosystem protection and human health. The main results showed that L. pedunculata, regardless of the seed origin, activated defence mechanisms against oxidative stress caused by high concentrations of metal(loid)s. Plants grown from seeds of both origins increased the production of AsA to preserve its reduction levels and kept the contents of GSH stable to maintain the cell’s redox state. Plants grown from seeds collected in non-contaminated areas showed a high capacity for adaptation to extreme conditions. This species showed a greater growth capacity when seeds from a contaminated area were sown in uncontaminated soils. Thus, L. pedunculata, mainly grown from seeds from contaminated areas, may be used in phytostabilization programmes in areas with soils with high contents of metal(loid)s. | en |
dc.description.sponsorship | Xunta de Galicia | Ref. Ref. ED481D 2019/007 | spa |
dc.description.sponsorship | Fundação para a Ciência e Tecnologia | Ref. DL57/2016/CP1382/CT0024 | spa |
dc.description.sponsorship | Fundação para a Ciência e Tecnologia | Ref. UID/AGR/04129/2020 | spa |
dc.language.iso | eng | spa |
dc.publisher | Plants | spa |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Influence of seed source and soil contamination on ecophysiological responses of Lavandula pedunculata in rehabilitation of mining areas | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.3390/plants11010105 | |
dc.identifier.editor | https://www.mdpi.com/2223-7747/11/1/105 | spa |
dc.publisher.departamento | Bioloxía vexetal e ciencias do solo | spa |
dc.publisher.grupoinvestigacion | Agrobioloxía Ambiental: Calidade, Solos e Plantas | spa |
dc.subject.unesco | 2511 Ciencias del Suelo (Edafología) | spa |
dc.subject.unesco | 2511.06 Conservación de Suelos | spa |
dc.subject.unesco | 3308 Ingeniería y Tecnología del Medio Ambiente | spa |
dc.date.updated | 2022-01-10T10:49:31Z | |
dc.computerCitation | pub_title=Plants|volume=11|journal_number=1|start_pag=105|end_pag= | spa |
dc.references | The authors thank the Xunta de Galicia and the University of Vigo for the
D. Arenas-Lago Postdoctoral grant “Axudas á etapa pousdoutoral da Xunta de Galicia (Consellería
de Educación, Universidade e Formación Profesional)” (Ref. ED481D 2019/007). LC acknowledges
the funding by FCT through DL57/2016/CP1382/CT0024. This work was developed in
the scope of the project Linking Landscape, Environment, Agriculture and Food Research Centre
(UID/AGR/04129/2020) financed by the FCT/MEC through national funds and, where applicable,
co-financed by the FEDER within the PT2020 Partnership Agreement. | spa |