Show simple item record

dc.contributor.authorIglesias Prado, José Ignacio 
dc.contributor.authorCalviño Barreiro, Uxía 
dc.contributor.authorLugo Latas, Luis 
dc.date.accessioned2022-01-10T12:47:31Z
dc.date.available2022-01-10T12:47:31Z
dc.date.issued2021-12-30
dc.identifier.citationApplied Sciences, 12(1): 329 (2021)en
dc.identifier.issn20763417
dc.identifier.urihttp://hdl.handle.net/11093/2952
dc.description.abstractThe lack of a standard experimental procedure to determine thermal conductivity of fluids is noticeable in heat transfer processes from practical and fundamental perspectives. Since a wide variety of techniques have been used, reported literature data have huge discrepancies. A common practice is using manufactured thermal conductivity meters for nanofluids, which can standardize the measurements but are also somewhat inaccurate. In this study, a new methodology to perform reliable measurements with a recent commercial transient hot-wire device is introduced. Accordingly, some extensively studied fluids in the literature (water, ethylene glycol, ethylene glycol:water mixture 50:50 vol%, propylene glycol, and n-tetradecane) covering the range 0.100 to 0.700 W m−1 K−1 were used to check the device in the temperature range 283.15 to 333.15 K. Deviations between the collected data and the theoretical model, and repeatabilities and deviations between reported and literature values, were analyzed. Systematic deviations in raw data were found, and a correction factor depending on the mean thermal conductivity was proposed to operate with nanofluids. Considering all tested effects, the expanded (k = 2) uncertainty of the device was set as 5%. This proposed methodology was also checked with n-hexadecane and magnesium-oxide-based n-tetradecane nanofluids.spa
dc.description.sponsorshipMinisterio de Ciencia e Innovación | Ref. PID2020-112846RB-C21spa
dc.description.sponsorshipMinisterio de Ciencia e Innovación | Ref. PDC2021-121225-C21spa
dc.description.sponsorshipXunta de Galicia | Ref. ED481A-2018/287spa
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. ENE2017-86425-C2-1-Rspa
dc.language.isoengspa
dc.publisherApplied Sciencesspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112846RB-C21/ESen
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121225-C21/ESen
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-86425-C2-1-R/ESen
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleExperimental methodology to determine thermal conductivity of nanofluids by using a commercial transient hot-wire deviceen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/app12010329
dc.identifier.editorhttps://www.mdpi.com/2076-3417/12/1/329spa
dc.publisher.departamentoFísica aplicadaspa
dc.publisher.grupoinvestigacionFísica Aplicada 2spa
dc.subject.unesco2213.02 Física de la Transmisión del Calorspa
dc.subject.unesco2204 Física de Fluidosspa
dc.subject.unesco2213 Termodinámicaspa
dc.date.updated2022-01-10T09:44:20Z
dc.computerCitationpub_title=Applied Sciences|volume=12|journal_number=1|start_pag=329|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International