Show simple item record

dc.contributor.authorPensado Mariño, Martín 
dc.contributor.authorFebrero Garrido, Lara 
dc.contributor.authorEguía Oller, Pablo 
dc.contributor.authorGranada Álvarez, Enrique 
dc.date.accessioned2021-12-14T12:55:05Z
dc.date.available2021-12-14T12:55:05Z
dc.date.issued2021-12-13
dc.identifier.citationSustainability, 13(24): 13735 (2021)spa
dc.identifier.issn20711050
dc.identifier.urihttp://hdl.handle.net/11093/2858
dc.description.abstractThe use of Machine Learning models is becoming increasingly widespread to assess energy performance of a building. In these models, the accuracy of the results depends largely on outdoor conditions. However, getting these data on-site is not always feasible. This article compares the temperature results obtained for an LSTM neural network model, using four types of meteorological data sources. The first is the monitoring carried out in the building; the second is a meteorological station near the site of the building; the third is a table of meteorological data obtained through a kriging process and the fourth is a dataset obtained using GFS. The results are analyzed using the CV(RSME) and NMBE indices. Based on these indices, in the four series, a CV(RSME) slightly higher than 3% is obtained, while the NMBE is below 1%, so it can be deduced that the sources used are interchangeable.en
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades | Ref. RTI2018-096296-B-C2spa
dc.language.isoengspa
dc.publisherSustainabilityspa
dc.relationinfo:eu-repo/grantAgreement/MICINN/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096296-B-C2/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFeasibility of different weather data sources applied to building indoor temperature estimation using LSTM neural networksen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/su132413735
dc.identifier.editorhttps://www.mdpi.com/2071-1050/13/24/13735spa
dc.publisher.departamentoEnxeñaría mecánica, máquinas e motores térmicos e fluídosspa
dc.publisher.grupoinvestigacionGTE (Grupo de Tecnoloxía Enerxética)spa
dc.subject.unesco3305.90 Transmisión de Calor en la Edificaciónspa
dc.subject.unesco3328.16 Transferencia de Calorspa
dc.subject.unesco3322.04 Transmisión de Energíaspa
dc.date.updated2021-12-14T11:19:14Z
dc.computerCitationpub_title=Sustainability|volume=13|journal_number=24|start_pag=13735|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International