dc.contributor.author | Nogueira Rodríguez, Alba | |
dc.contributor.author | Domínguez Carbajales, Rubén | |
dc.contributor.author | López Fernández, Hugo | |
dc.contributor.author | Iglesias, Águeda | |
dc.contributor.author | Cubiella Fernández, Joaquín | |
dc.contributor.author | Fernández Riverola, Florentino | |
dc.contributor.author | Reboiro Jato, Miguel | |
dc.contributor.author | González Peña, Daniel | |
dc.date.accessioned | 2021-12-01T12:06:23Z | |
dc.date.available | 2021-12-01T12:06:23Z | |
dc.date.issued | 2021-01 | |
dc.identifier.citation | Neurocomputing, 423, 721-734 (2021) | spa |
dc.identifier.issn | 09252312 | |
dc.identifier.uri | http://hdl.handle.net/11093/2802 | |
dc.description.abstract | Deep Learning (DL) has attracted a lot of attention in the field of medical image analysis because of its higher performance in image classification when compared to previous state-of-the-art techniques. In addition, a recent meta-analysis found that the diagnostic performance of DL models is equivalent to that of health-care professionals. In this scenario, a lot of research using DL for polyp detection and classification have been published showing promising results in the last five years. Our work aims to review the most relevant studies from a technical point of view, focusing on the low-level details for the implementation of the DL models. To do so, this review analyzes the published research covering aspects like DL architectures, training strategies, data augmentation, transfer learning, or the features of the datasets used and their impact on the performance of the models. Additionally, comparative tables summarizing the main aspects analyzed in this review are publicly available at https://github.com/sing-group/deep-learning-colonoscopy. | en |
dc.description.sponsorship | Xunta de Galicia | Ref. ED431C2018 / 55-GRC | spa |
dc.description.sponsorship | Ministerio de Economía, Industria y Competitividad | Ref. DPI2017-87494-R | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. ED481A-2019/299 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. ED481B 2016 / 068-0 | spa |
dc.description.sponsorship | Instituto de Salud Carlos III | Ref. PI11 / 00094 | spa |
dc.description.sponsorship | Instituto de Salud Carlos III | Ref. PI17 / 00837 | spa |
dc.language.iso | eng | spa |
dc.publisher | Neurocomputing | spa |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87494-R/ES | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Deep neural networks approaches for detecting and classifying colorectal polyps | en |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.1016/j.neucom.2020.02.123 | |
dc.identifier.editor | https://linkinghub.elsevier.com/retrieve/pii/S0925231220307359 | spa |
dc.publisher.departamento | Informática | spa |
dc.publisher.grupoinvestigacion | Sistemas Informáticos de Nova Xeración | spa |
dc.subject.unesco | 32 Ciencias Médicas | spa |
dc.subject.unesco | 1203.04 Inteligencia Artificial | spa |
dc.subject.unesco | 1203.20 Sistemas de Control Medico | spa |
dc.date.updated | 2021-11-24T09:42:19Z | |
dc.computerCitation | pub_title=Neurocomputing|volume=423|journal_number=|start_pag=721|end_pag=734 | spa |
dc.references | SING group thanks CITI (Centro de Investigación, Transferencia e Innovación) from the University of Vigo for hosting its IT infrastructure. This work was partially supported by the Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) under the scope of the strategic funding of ED431C2018/55-GRC Competitive Reference Group and by the Ministerio de Economía, Industria y Competitividad, Gobierno de España under the scope of the PolyDeep project (DPI2017-87494-R). The authors also acknowledge the grants of Alba Nogueira-Rodríguez (predoctoral fellowship ED481A-2019/299) and Hugo López-Fernández (postdoctoral fellowship ED481B 2016/068-0), funded by the Xunta de Galicia. Joaquín Cubiella received grants from Instituto de Salud Carlos III (PI11/00094 and PI17/00837). | en |