Show simple item record

dc.contributor.authorLópez Malvar, Ana 
dc.contributor.authorMalvar, Rosa Ana
dc.contributor.authorSouto, Xose Carlos
dc.contributor.authorGómez, Leonardo Dario
dc.contributor.authorSimister, Rachael
dc.contributor.authorEncina, Antonio
dc.contributor.authorBarros Rios, Jaime
dc.contributor.authorPereira Crespo, Sonia
dc.contributor.authorSantiago Carabelos, Rogelio 
dc.date.accessioned2021-11-25T13:40:58Z
dc.date.available2021-11-25T13:40:58Z
dc.date.issued2021-06-02
dc.identifier.citationBMC Plant Biology, 21(1): 251 (2021)spa
dc.identifier.issn14712229
dc.identifier.urihttp://hdl.handle.net/11093/2760
dc.description.abstractBackground Besides the use of maize grain as food and feed, maize stover can be a profitable by-product for cellulosic ethanol production, whereas the whole plant can be used for silage production. However, yield is reduced by pest damages, stem corn borers being one of the most important yield constraints. Overall, cell wall composition is key in determining the quality of maize biomass, as well as pest resistance. This study aims to evaluate the composition of the four cell wall fractions (cellulose, hemicellulose, lignin and hydroxycinnamates) in diverse maize genotypes and to understand how this composition influences the resistance to pests, ethanol capacity and digestibility. Results The following results can be highlighted: (i) pests’ resistant materials may show cell walls with low p-coumaric acid and low hemicellulose content; (ii) inbred lines showing cell walls with high cellulose content and high diferulate cross-linking may present higher performance for ethanol production; (iii) and inbreds with enhanced digestibility may have cell walls poor in neutral detergent fibre and diferulates, combined with a lignin polymer composition richer in G subunits. Conclusions Results evidence that there is no maize cell wall ideotype among the tested for optimal performance for various uses, and maize plants should be specifically bred for each particular applicationeng
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. RTI2018–096776-B-C21spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. RTI2018–096776-B-C22spa
dc.language.isoengspa
dc.publisherBMC Plant Biologyspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096776-B-C21/ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096776-B-C22/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleElucidating the multifunctional role of the cell wall components in the maize exploitationeng
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1186/s12870-021-03040-3
dc.identifier.editorhttps://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-021-03040-3spa
dc.publisher.departamentoBioloxía vexetal e ciencias do solospa
dc.publisher.grupoinvestigacionAgrobioloxía Ambiental: Calidade, Solos e Plantasspa
dc.subject.unesco3103.01 Producción de Cultivosspa
dc.subject.unesco3103.08 Gestión de la Producción Vegetalspa
dc.subject.unesco2417 Biología Vegetal (Botánica)spa
dc.date.updated2021-11-25T09:23:28Z
dc.computerCitationpub_title=BMC Plant Biology|volume=21|journal_number=1|start_pag=251|end_pag=spa
dc.referencesWe are grateful to Prof. Simon J McQueen Mason for their support at the CNAP, University of York, UK. We thank Lana Reid for the transfer of the Canadian inbred lines, and the Dixon laboratory at University of North Texas for support with the lignin compositional analyses. We thank Dr. Pedro Revilla and Dr. Ana Butrón for the final proof read of the manuscriptspa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International