Show simple item record

dc.contributor.authorIturrioz Rodríguez, Nerea
dc.contributor.authorCorrea Duarte, Miguel Ángel 
dc.contributor.authorValiente, Rafael
dc.contributor.authorFanarraga, Mónica L.
dc.date.accessioned2021-08-03T09:37:51Z
dc.date.available2021-08-03T09:37:51Z
dc.date.issued2020-05-28
dc.identifier.citationPharmaceutics, 12(6): 487 (2020)spa
dc.identifier.issn19994923
dc.identifier.urihttp://hdl.handle.net/11093/2402
dc.description.abstractMesoporous silica particles (MSP) are major candidates for drug delivery systems due to their versatile, safe, and controllable nature. Understanding their intracellular route and biodegradation process is a challenge, especially when considering their use in neuronal repair. Here, we characterize the spatiotemporal intracellular destination and degradation pathways of MSP upon endocytosis by HeLa cells and NSC-34 motor neurons using confocal and electron microscopy imaging together with inductively-coupled plasma optical emission spectroscopy analysis. We demonstrate how MSP are captured by receptor-mediated endocytosis and are temporarily stored in endo-lysosomes before being finally exocytosed. We also illustrate how particles are often re-endocytosed after undergoing surface erosion extracellularly. On the other hand, silica particles engineered to target the cytosol with a carbon nanotube coating, are safely dissolved intracellularly in a time scale of hours. These studies provide fundamental clues for programming the sub-cellular fate of MSP and reveal critical aspects to improve delivery strategies and to favor MSP safe elimination. We also demonstrate how the cytosol is significantly more corrosive than lysosomes for MSP and show how their biodegradation is fully biocompatible, thus, validating their use as nanocarriers for nervous system cells, including motor neurons.eng
dc.description.sponsorshipInstituto de Salud Carlos III | Ref. PI16/00496spa
dc.description.sponsorshipInstituto de Salud Carlos III | Ref. PI19/00349spa
dc.description.sponsorshipInstituto de Salud Carlos III | Ref. DTS19/00033spa
dc.description.sponsorshipEuropean Regional Development Fund | Ref. "Investing in your future"spa
dc.description.sponsorshipEuropean Cooperation in Science and Technology | Ref. Nano2Clinic CA17140spa
dc.description.sponsorshipXunta de Galicia | Ref. EM2014/035spa
dc.description.sponsorshipMinisterio de Ciencia e Innovación | Ref. CTM2017-84050-Rspa
dc.description.sponsorshipIDIVAL | Ref. INNVAL 17/11spa
dc.description.sponsorshipIDIVAL | Ref. INNVAL18 / 28spa
dc.description.sponsorshipIDIVAL | Ref. INNVAL19 / 18spa
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. MINECO-17-MAT2016-81955-REDTspa
dc.language.isoengspa
dc.publisherPharmaceuticsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-84050-R/ES/DESARROLLO DE NUEVAS TECNOLOGIAS PARA LA DETECCION Y MONITORIZACION DE AMENAZAS RECIENTEMENTE IDENTIFICADAS EN EL MEDIO MARINO
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleEngineering sub-cellular targeting strategies to enhance safe cytosolic silica particle dissolution in cellseng
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/pharmaceutics12060487
dc.identifier.editorhttps://www.mdpi.com/1999-4923/12/6/487spa
dc.publisher.departamentoQuímica Físicaspa
dc.publisher.grupoinvestigacionTEAM NANO TECH (Grupo de Nanotecnoloxía)spa
dc.subject.unesco3303 Ingeniería y Tecnología Químicasspa
dc.subject.unesco2302 Bioquímicaspa
dc.subject.unesco2307 Química Físicaspa
dc.date.updated2021-08-02T11:47:45Z
dc.computerCitationpub_title=Pharmaceutics|volume=12|journal_number=6|start_pag=487|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International