dc.contributor.author | Iturrioz Rodríguez, Nerea | |
dc.contributor.author | Correa Duarte, Miguel Ángel | |
dc.contributor.author | Valiente, Rafael | |
dc.contributor.author | Fanarraga, Mónica L. | |
dc.date.accessioned | 2021-08-03T09:37:51Z | |
dc.date.available | 2021-08-03T09:37:51Z | |
dc.date.issued | 2020-05-28 | |
dc.identifier.citation | Pharmaceutics, 12(6): 487 (2020) | spa |
dc.identifier.issn | 19994923 | |
dc.identifier.uri | http://hdl.handle.net/11093/2402 | |
dc.description.abstract | Mesoporous silica particles (MSP) are major candidates for drug delivery systems due to their versatile, safe, and controllable nature. Understanding their intracellular route and biodegradation process is a challenge, especially when considering their use in neuronal repair. Here, we characterize the spatiotemporal intracellular destination and degradation pathways of MSP upon endocytosis by HeLa cells and NSC-34 motor neurons using confocal and electron microscopy imaging together with inductively-coupled plasma optical emission spectroscopy analysis. We demonstrate how MSP are captured by receptor-mediated endocytosis and are temporarily stored in endo-lysosomes before being finally exocytosed. We also illustrate how particles are often re-endocytosed after undergoing surface erosion extracellularly. On the other hand, silica particles engineered to target the cytosol with a carbon nanotube coating, are safely dissolved intracellularly in a time scale of hours. These studies provide fundamental clues for programming the sub-cellular fate of MSP and reveal critical aspects to improve delivery strategies and to favor MSP safe elimination. We also demonstrate how the cytosol is significantly more corrosive than lysosomes for MSP and show how their biodegradation is fully biocompatible, thus, validating their use as nanocarriers for nervous system cells, including motor neurons. | eng |
dc.description.sponsorship | Instituto de Salud Carlos III | Ref. PI16/00496 | spa |
dc.description.sponsorship | Instituto de Salud Carlos III | Ref. PI19/00349 | spa |
dc.description.sponsorship | Instituto de Salud Carlos III | Ref. DTS19/00033 | spa |
dc.description.sponsorship | European Regional Development Fund | Ref. "Investing in your future" | spa |
dc.description.sponsorship | European Cooperation in Science and Technology | Ref. Nano2Clinic CA17140 | spa |
dc.description.sponsorship | Xunta de Galicia | Ref. EM2014/035 | spa |
dc.description.sponsorship | Ministerio de Ciencia e Innovación | Ref. CTM2017-84050-R | spa |
dc.description.sponsorship | IDIVAL | Ref. INNVAL 17/11 | spa |
dc.description.sponsorship | IDIVAL | Ref. INNVAL18 / 28 | spa |
dc.description.sponsorship | IDIVAL | Ref. INNVAL19 / 18 | spa |
dc.description.sponsorship | Ministerio de Economía y Competitividad | Ref. MINECO-17-MAT2016-81955-REDT | spa |
dc.language.iso | eng | spa |
dc.publisher | Pharmaceutics | spa |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-84050-R/ES/DESARROLLO DE NUEVAS TECNOLOGIAS PARA LA DETECCION Y MONITORIZACION DE AMENAZAS RECIENTEMENTE IDENTIFICADAS EN EL MEDIO MARINO | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Engineering sub-cellular targeting strategies to enhance safe cytosolic silica particle dissolution in cells | eng |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.3390/pharmaceutics12060487 | |
dc.identifier.editor | https://www.mdpi.com/1999-4923/12/6/487 | spa |
dc.publisher.departamento | Química Física | spa |
dc.publisher.grupoinvestigacion | TEAM NANO TECH (Grupo de Nanotecnoloxía) | spa |
dc.subject.unesco | 3303 Ingeniería y Tecnología Químicas | spa |
dc.subject.unesco | 2302 Bioquímica | spa |
dc.subject.unesco | 2307 Química Física | spa |
dc.date.updated | 2021-08-02T11:47:45Z | |
dc.computerCitation | pub_title=Pharmaceutics|volume=12|journal_number=6|start_pag=487|end_pag= | spa |