Show simple item record

dc.contributor.authorLamas Novoa, Daniel 
dc.contributor.authorSoilán Rodríguez, Mario 
dc.contributor.authorGrandio Gonzalez, Javier 
dc.contributor.authorRiveiro Rodríguez, Belén 
dc.date.accessioned2021-07-19T08:17:55Z
dc.date.available2021-07-19T08:17:55Z
dc.date.issued2021-06-14
dc.identifier.citationRemote Sensing, 13(12): 2332 (2021)spa
dc.identifier.issn20724292
dc.identifier.urihttp://hdl.handle.net/11093/2347
dc.description.abstractThe growing development of data digitalisation methods has increased their demand and applications in the transportation infrastructure field. Currently, mobile mapping systems (MMSs) are one of the most popular technologies for the acquisition of infrastructure data, with three-dimensional (3D) point clouds as their main product. In this work, a heuristic-based workflow for semantic segmentation of complex railway environments is presented, in which their most relevant elements are classified, namely, rails, masts, wiring, droppers, traffic lights, and signals. This method takes advantage of existing methodologies in the field for point cloud processing and segmentation, taking into account the geometry and spatial context of each classified element in the railway environment. This method is applied to a 90-kilometre-long railway lane and validated against a manual reference on random sections of the case study data. The results are presented and discussed at the object level, differentiating the type of the element. The indicators F1 scores obtained for each element are superior to 85%, being higher than 99% in rails, the most significant element of the infrastructure. These metrics showcase the quality of the algorithm, which proves that this method is efficient for the classification of long and variable railway sections, and for the assisted labelling of point cloud data for future applications based on training supervised learning models.en
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. RTI2018-095893-B-C21spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. FJC2018-035550-Ispa
dc.language.isoengen
dc.publisherRemote Sensingspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095893-B-C21/ES/EVALUACION DE CICLO DE VIDA DE ESTRUCTURAS DE PUENTES EXISTENTES UTILIZANDO DATOS MULTIESCALA Y MULTIFUENTES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/FJC2018-035550-I/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleAutomatic point cloud semantic segmentation of complex railway environmentsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/769255
dc.identifier.doi10.3390/rs13122332
dc.identifier.editorhttps://www.mdpi.com/2072-4292/13/12/2332spa
dc.publisher.departamentoEnxeñaría dos recursos naturais e medio ambientespa
dc.publisher.departamentoEnxeñaría dos materiais, mecánica aplicada e construciónspa
dc.publisher.grupoinvestigacionXeotecnoloxías Aplicadasspa
dc.subject.unesco3305.06 Ingeniería Civil
dc.subject.unesco3310.04 Ingeniería de Mantenimiento
dc.subject.unesco3323.02 Equipo Ferroviario
dc.date.updated2021-07-14T10:12:08Z
dc.computerCitationpub_title=Remote Sensing|volume=13|journal_number=12|start_pag=2332|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International