A whole-slurry fermentation approach to high-solid loading for bioethanol production from corn stover
DATE:
2020-11-15
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/2228
EDITED VERSION: https://www.mdpi.com/2073-4395/10/11/1790
UNESCO SUBJECT: 3308.02 Residuos Industriales ; 3302.90 Ingeniería Bioquímica ; 3303.03 Procesos Químicos
DOCUMENT TYPE: article
ABSTRACT
Corn stover is the most produced byproduct from maize worldwide. Since it is generated as a residue from maize harvesting, it is an inexpensive and interesting crop residue to be used as a feedstock. An ecologically friendly pretreatment such as autohydrolysis was selected for the manufacture of second-generation bioethanol from corn stover via whole-slurry fermentation at high-solid loadings. Temperatures from 200 to 240 °C were set for the autohydrolysis process, and the solid and liquid phases were analyzed. Additionally, the enzymatic susceptibility of the solid phases was assessed to test the suitability of the pretreatment. Afterward, the production of bioethanol from autohydrolyzed corn stover was carried out, mixing the solid with different percentages of the autohydrolysis liquor (25%, 50%, 75%, and 100%) and water (0% of liquor), from a total whole slurry fermentation (saving energy and water in the liquid–solid separation and subsequent washing of the solid phase) to employing water as only liquid medium. In spite of the challenging scenario of using the liquor fraction as liquid phase in the fermentation, values between 32.2 and 41.9 g ethanol/L and ethanol conversions up to 80% were achieved. This work exhibits the feasibility of corn stover for the production of bioethanol via a whole-slurry fermentation process.