Show simple item record

dc.contributor.authorPardo, Fernando
dc.contributor.authorGutiérrez Hernández, Sergio V.
dc.contributor.authorHermida Merino, Carolina 
dc.contributor.authorAraújo, João M. M.
dc.contributor.authorMartínez Piñeiro, Manuel 
dc.contributor.authorPereiro, Ana B.
dc.contributor.authorZarca, Gabriel
dc.contributor.authorUrtiaga, Ane
dc.date.accessioned2021-05-24T12:12:58Z
dc.date.available2021-05-24T12:12:58Z
dc.date.issued2021-02-26
dc.identifier.citationNanomaterials, 11(3): 582 (2021)spa
dc.identifier.issn20794991
dc.identifier.urihttp://hdl.handle.net/11093/2172
dc.description.abstractMembrane technology can play a very influential role in the separation of the constituents of HFC refrigerant gas mixtures, which usually exhibit azeotropic or near-azeotropic behavior, with the goal of promoting the reuse of value-added compounds in the manufacture of new low-global warming potential (GWP) refrigerant mixtures that abide by the current F-gases regulations. In this context, the selective recovery of difluorometane (R32, GWP = 677) from the commercial blend R410A (GWP = 1924), an equimass mixture of R32 and pentafluoroethane (R125, GWP = 3170), is sought. To that end, this work explores for the first time the separation performance of novel mixed-matrix membranes (MMMs) functionalized with ioNanofluids (IoNFs) consisting in a stable suspension of exfoliated graphene nanoplatelets (xGnP) into a fluorinated ionic liquid (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate ([C2C1py][C4F9SO3]). The results show that the presence of IoNF in the MMMs significantly enhances gas permeation, yet at the expense of slightly decreasing the selectivity of the base polymer. The best results were obtained with the MMM containing 40 wt% IoNF, which led to an improved permeability of the gas of interest (PR32 = 496 barrer) with respect to that of the neat polymer (PR32 = 279 barrer) with a mixed-gas separation factor of 3.0 at the highest feed R410A pressure tested. Overall, the newly fabricated IoNF-MMMs allowed the separation of the near-azeotropic R410A mixture to recover the low-GWP R32 gas, which is of great interest for the circular economy of the refrigeration sector.spa
dc.description.sponsorshipEuropean Regional Development Fund | Ref. KET4F-Gas-SOE2/P1/P0823spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2019-105827RB-I00/ AEI / 10.13039/501100011033spa
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades | Ref. FJCI-2017-32884spa
dc.description.sponsorshipLaboratório Associado para a Química Verde | Ref. FCT/MCTES UIDB/50006/2020spa
dc.language.isoengspa
dc.publisherNanomaterialsspa
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleIntegration of stable ionic liquid-based nanofluids into polymer membranes. Part II: gas separation properties toward fluorinated greenhouse gasesspa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/nano11030582
dc.identifier.editorhttps://www.mdpi.com/2079-4991/11/3/582spa
dc.publisher.departamentoFísica aplicadaspa
dc.publisher.grupoinvestigacionFísica Aplicada 2spa
dc.subject.unesco2213 Termodinámicaspa
dc.subject.unesco2204.08 Líquidosspa
dc.subject.unesco2204.02 Dispersionesspa
dc.date.updated2021-05-24T08:26:27Z
dc.computerCitationpub_title=Nanomaterials|volume=11|journal_number=3|start_pag=582|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International