Show simple item record

dc.contributor.authorTommasini , Daniele 
dc.date.accessioned2021-05-05T12:30:08Z
dc.date.available2021-05-05T12:30:08Z
dc.date.issued2021-04-06
dc.identifier.citationMathematics, 9(7): 785 (2021)spa
dc.identifier.issn22277390
dc.identifier.urihttp://hdl.handle.net/11093/2100
dc.description.abstractA class of bivariate infinite series solutions of the elliptic and hyperbolic Kepler equations is described, adding to the handful of 1-D series that have been found throughout the centuries. This result is based on an iterative procedure for the analytical computation of all the higher-order partial derivatives of the eccentric anomaly with respect to the eccentricity e and mean anomaly M in a given base point (ec,Mc) of the (e,M) plane. Explicit examples of such bivariate infinite series are provided, corresponding to different choices of (ec,Mc), and their convergence is studied numerically. In particular, the polynomials that are obtained by truncating the infinite series up to the fifth degree reach high levels of accuracy in significantly large regions of the parameter space (e,M). Besides their theoretical interest, these series can be used for designing 2-D spline numerical algorithms for efficiently solving Kepler’s equations for all values of the eccentricity and mean anomaly.spa
dc.description.sponsorshipMinisterio de Economia, Industria y Competitividad, Spain | Ref. FIS2017-83762-Pspa
dc.language.isoengspa
dc.publisherMathematicsspa
dc.relationinfo:eu-repo/grantAgreement/AEI//FIS2017-83762-P/ES/SIMULACION OPTICA DE MATERIA OSCURA Y OTROS SISTEMAS DE FISICA FUNDAMENTAL
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleBivariate infinite series solution of Kepler’s equationsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/math9070785
dc.identifier.editorhttps://www.mdpi.com/2227-7390/9/7/785spa
dc.publisher.departamentoFísica aplicadaspa
dc.publisher.grupoinvestigacionGrupo de Ingeniería Físicaspa
dc.subject.unesco1206 Análisis Numéricospa
dc.subject.unesco2512 Ciencias del Espaciospa
dc.subject.unesco21 Astronomía y Astrofísicaspa
dc.date.updated2021-05-05T09:17:27Z
dc.computerCitationpub_title=Mathematics|volume=9|journal_number=7|start_pag=785|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International