dc.contributor.author | Calviño Barreiro, Uxía | |
dc.contributor.author | Pérez Vallejo, Javier | |
dc.contributor.author | Buschmann, Matthias H. | |
dc.contributor.author | Fernández Seara, José | |
dc.contributor.author | Lugo Latas, Luis | |
dc.date.accessioned | 2021-04-29T11:44:58Z | |
dc.date.available | 2021-04-29T11:44:58Z | |
dc.date.issued | 2021-03-25 | |
dc.identifier.citation | Nanomaterials, 11(4): 844 (2021) | spa |
dc.identifier.issn | 20794991 | |
dc.identifier.uri | http://hdl.handle.net/11093/2059 | |
dc.description.abstract | The thermal properties of graphene have proved to be exceptional and are partly maintained in its multi-layered form, graphene nanoplatelets (GnP). Since these carbon-based nanostructures are hydrophobic, functionalization is needed in order to assess their long-term stability in aqueous suspensions. In this study, the convective heat transfer performance of a polycarboxylate chemically modified GnP dispersion in water at 0.50 wt% is experimentally analyzed. After designing the nanofluid, dynamic viscosity, thermal conductivity, isobaric heat capacity and density are measured using rotational rheometry, the transient hot-wire technique, differential scanning calorimetry and vibrating U-tube methods, respectively, in a wide temperature range. The whole analysis of thermophysical and rheological properties is validated by two laboratories. Afterward, an experimental facility is used to evaluate the heat transfer performance in a turbulent regime. Convective heat transfer coefficients are obtained using the thermal resistances method, reaching enhancements for the nanofluid of up to 13%. The reported improvements are achieved without clear enhancements in the nanofluid thermal conductivity. Finally, dimensionless analyses are carried out by employing the Nusselt and Péclet numbers and Darcy friction factor. | spa |
dc.description.sponsorship | Ministerio de Economía y Competitividad | Ref. ENE2017-86425-C2-1-R | spa |
dc.description.sponsorship | European Cooperation in Science and Technology | Ref. CA15119 | spa |
dc.language.iso | eng | spa |
dc.publisher | Nanomaterials | spa |
dc.rights | Creative Commons Attribution
(CC BY) license | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Analysis of heat transfer characteristics of a GnP aqueous nanofluid through a double-tube heat exchanger | spa |
dc.type | article | spa |
dc.rights.accessRights | openAccess | spa |
dc.identifier.doi | 10.3390/nano11040844 | |
dc.identifier.editor | https://www.mdpi.com/2079-4991/11/4/844 | spa |
dc.publisher.departamento | Física aplicada | spa |
dc.publisher.departamento | Enxeñaría mecánica, máquinas e motores térmicos e fluídos | spa |
dc.publisher.grupoinvestigacion | Física Aplicada 2 | spa |
dc.subject.unesco | 2213.02 Física de la Transmisión del Calor | spa |
dc.subject.unesco | 3328.16 Transferencia de Calor | spa |
dc.subject.unesco | 2204 Física de Fluidos | spa |
dc.date.updated | 2021-04-29T11:19:31Z | |
dc.computerCitation | pub_title=Nanomaterials|volume=11|journal_number=4|start_pag=844|end_pag= | spa |