Development of pretreatment strategies for the fractionation of hazelnut shells in the scope of biorefinery
FECHA:
2020-10-14
IDENTIFICADOR UNIVERSAL: http://hdl.handle.net/11093/1810
VERSIÓN EDITADA: https://www.mdpi.com/2073-4395/10/10/1568
MATERIA UNESCO: 3303.03 Procesos Químicos ; 3310.05 Ingeniería de Procesos ; 3309.12 Aditivos Alimentarios
TIPO DE DOCUMENTO: article
RESUMEN
Hazelnut shells are an important waste from the hazelnut processing industry that could be valorized in a multi-product biorefinery. Individual or combined pretreatments may be integrated in processes enabling the integral fractionation of biomass. In this study, fractionation methods based on alkaline, alkaline-organosolv, organosolv, or acid-catalyzed organosolv treatments were applied to raw or autohydrolyzed hazelnut shells. A comparative analysis of results confirmed that the highest lignin removal was achieved with the acid-catalyzed organosolv delignification, which also allowed limited cellulose losses. When this treatment was applied to raw hazelnut shells, 65.3% of the lignin was removed, valuable hemicellulose-derived products were obtained, and the cellulose content of the processed solids increased up to 54%. Autohydrolysis of hazelnut shells resulted in the partial solubilization of hemicelluloses (mainly in the form of soluble oligosaccharides). Consecutive stages of autohydrolysis and acid-catalyzed organosolv delignification resulted in 47.9% lignin removal, yielding solids of increased cellulose content (55.4%) and very low content of residual hemicelluloses. The suitability of selected delignified and autohydrolyzed-delignified hazelnut shells as substrates for enzymatic hydrolysis was assessed in additional experiments. The most susceptible substrates (from acid-catalyzed organosolv treatments) reached 74.2% cellulose conversion into glucose, with a concentration of 28.52 g glucose/L.