Computation of thermophysical properties for magnetite-based hyperthermia treatment simulations using infrared thermography
DATE:
2020-06
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/1476
EDITED VERSION: https://linkinghub.elsevier.com/retrieve/pii/S0017931019363859
DOCUMENT TYPE: article
ABSTRACT
In the biomedicine field, the application of temperature variations, both spatially and temporally, on
the surface and subsurface of the human body is becoming increasingly important. Proof of this is
the increasing appearance of different types of hyperthermia treatments for the apoptosis of malignant
cells, minimising the damage to the healthy cells. The hyperthermia treatment with magnetite (Fe 3 O 4 )
nanoparticles is one of the newest, in which the knowledge of accurate values of the thermophysical
properties of the elements involved in the treatment is recommended for its study in simulation tools,
allowing the latter to predict the response of the organ to be treated before its application and without
the need to perform in vivo tests for the particular purpose of characterisation.
The InfraRed Thermography technique is used in this paper for the acquisition and monitoring of tem-
perature values in the regions of interest, with the support of a series of thermal image processing al-
gorithms, in order to use them in a heat transfer model developed, allowing the computation of the
thermophysical properties useful for the simulation of hyperthermia treatment with magnetite nanopar-
ticles directly from in vitro tests and with no disruption, towards an optimal design of the treatment. To
achieve this objective, the validity of InfraRed Thermography for measuring temperature on in vitro tests
and a temperature measurement protocol has been previously tested and designed, respectively, through
the analysis of six different in vitro tests. Consistent results are obtained, ending with critical conclusions
for future approaches.